
IBM WebSphere eXtreme Scale Version 7.0

Programming Guide
March 11, 2011

���

This edition applies to version 7, release 0, of WebSphere eXtreme Scale and to all subsequent releases and
modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 2009, 2011.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About the Programming Guide v

Chapter 1. Getting started with
WebSphere eXtreme Scale. 1

Chapter 2. Programming WebSphere
eXtreme Scale 7

Chapter 3. Accessing data in WebSphere
eXtreme Scale 9
Interacting with an ObjectGrid using the
ObjectGridManager. 12

createObjectGrid methods 12
getObjectGrid methods 16
removeObjectGrid methods 16
Connecting to a distributed ObjectGrid 17
Controlling the life cycle of an ObjectGrid . . . 22

Accessing the ObjectGrid shard. 24
Using Sessions to access data in the grid 25
Handling locks 29
Transaction isolation 38
SessionHandle for routing 40
Optimistic collision exception 40
ObjectMap API 42

Introduction to ObjectMap 42
Dynamic maps 45
ObjectMap and JavaMap 47
Maps as FIFO queues 48

Caching objects and their relationships
(EntityManager API) 51

Defining an entity schema 52
EntityManager in a distributed environment . . 62
Interacting with EntityManager. 65
EntityManager fetch plan support 72
EntityManager interface performance impact . . 75
Entity query queues 79
EntityTransaction interface 82

Query API. 83
Querying data in multiple time zones 87
Using the ObjectQuery API 88
EntityManager Query API 93
Reference for eXtreme Scale queries 97
Query performance tuning 107

Indexing 118
Using indexing for non-key data access . . . 120
Composite HashIndex 123

Data Grid API 126
DataGrid APIs and partitioning 126
DataGrid agents and entity-based Maps . . . 126
DataGrid API example 127

API Documentation 131

Chapter 4. System APIs and plug-ins 133
Introduction to plug-ins 133

Event listeners 135
MapEventListener plug-in 136
ObjectGridEventListener plug-in 137

Eviction 139
Writing a custom evictor 141

Writing an index plug-in 146
TransactionCallback plug-in 148

Introduction to plug-in slots 152
External transaction managers 155

Using a Loader 157
Writing a loader 159
JPA loader programming considerations . . . 164
JPAEntityLoader plug-in. 166
Using a loader with entity maps and tuples . . 168
Writing a loader with a replica preload
controller 173

LogElement and LogSequence 177
Using eXtreme Scale with JPA 180

Client-based JPA preload utility overview . . . 180
JPA time-based data updater 189

OptimisticCallback plug-in 193
ObjectTransformer plug-in 197
WebSphereTransactionCallback plug-in 201

Chapter 5. Administration APIs 203
Embedded server API 203

Using the embedded server API 205
Monitoring with the statistics API 207

Chapter 6. Integrating with Spring
framework 211
Native transactions 212
Spring extension beans and namespace support 216

Chapter 7. Security API 221
Client authentication programming 222
Client authorization programming 239
Data grid authentication. 247
Local security 247

Chapter 8. Performance
considerations 253
JVM tuning 253
CopyMode best practices 254

Byte array maps 260
Plug-in evictor performance best practices 262
Locking performance best practices 264

Map entry locks with query and indexes . . . 265
ObjectTransformer interface best practices 267
Serialization performance 268

Chapter 9. Troubleshooting 271
Logs and trace 271

Trace options 273

© Copyright IBM Corp. 2009, 2011 iii

Troubleshooting loaders 274
Troubleshooting client connectivity problems . . . 276
Messages 277
Release notes 277

Chapter 10. Glossary 279

Notices 301

Trademarks 303

Index 305

iv IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

About the Programming Guide

The WebSphere® eXtreme Scale documentation set includes three volumes that
provide the information necessary to use, program for, and administer the
WebSphere eXtreme Scale product.

WebSphere eXtreme Scale library

The WebSphere eXtreme Scale library contains the following books:
v The Administration Guide contains the information necessary for system

administrators, including how to plan application deployments, plan for
capacity, install and configure the product, start and stop servers, monitor the
environment, and secure the environment.

v The Programming Guide contains information for application developers on how
to develop applications for WebSphere eXtreme Scale using the included API
information.

v The Product Overview contains a high-level view of WebSphere eXtreme Scale
concepts, including use case scenarios, and tutorials.

To download the books, go to the WebSphere eXtreme Scale library page.

You can also access the same information in this library in the WebSphere eXtreme
Scale information center.

Who should use this book

This book is intended primarily for application developers.

How this book is structured

The book contains information about the following major topics:
v Chapter 1 includes information about getting started withWebSphere eXtreme

Scale.
v Chapter 2 includes information about how to program WebSphere eXtreme

Scale.
v Chapter 3 includes information about accessing data.
v Chapter 4 includes information about System APIs and plug-ins.
v Chapter 5 includes information about integrating with the Spring framework.
v Chapter 6 includes information about the security API.
v Chapter 7 includes information about the administration API.
v Chapter 8 includes information about performance considerations.
v Chapter 9 includes information about troubleshooting.
v Chapter 10 includes the product glossary.

Getting updates to this book

You can get updates to this book by downloading the most recent version from the
WebSphere eXtreme Scale library page.

© Copyright IBM Corp. 2009, 2011 v

http://www-01.ibm.com/software/webservers/appserv/extremescale/library/index.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r0/index.jsp
http://www-01.ibm.com/software/webservers/appserv/extremescale/library/index.html

How to send your comments

Contact the documentation team. Did you find what you needed? Was it accurate
and complete? Send your comments about this documentation by e-mail to
wasdoc@us.ibm.com.

vi IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

mailto:wasdoc@us.ibm.com?subject=WebSphere eXtreme Scale

Chapter 1. Getting started with WebSphere eXtreme Scale

After you install WebSphere eXtreme Scale in a stand-alone environment, use the
following steps as a simple introduction to its capability as an in-memory data
grid.

The stand-alone installation of WebSphere eXtreme Scale includes a sample that
you can use to verify your installation and to see how a simple eXtreme Scale data
grid and client can be used. The getting started sample is in the
installRoot/ObjectGrid/gettingstarted directory.

The getting started sample provides a quick introduction to eXtreme Scale
functionality and basic operation. The sample consists of shell and batch scripts
designed to start a simple grid with very little customization needed. In addition, a
client program, including source, is provided to run simple create, read, update,
and delete (CRUD) functions to this basic grid.

Scripts and their functions

This sample provides the following four scripts:

The env.sh|bat script is called by the other scripts to set needed environment
variables. Normally you do not need to change this script.

v UNIX Linux ./env.sh

v Windows env.bat

The runcat.sh|bat starts the eXtreme Scale catalog service process on the local
system.

v UNIX Linux ./runcat.sh

v Windows runcat.bat

The runcontainer.sh|bat script starts a container server process. You can run this
script multiple times with unique server names specified to start any number of
containers. These instances can work together to host partitioned and redundant
information in the data grid.

v UNIX Linux ./runcontainer.sh unique_server_name

v Windows runcontainer.bat unique_server_name

The runclient.sh|bat script runs the simple CRUD client and starts the given
operation.

v UNIX Linux ./runclient.sh command value1 value2

v Windows runclient.sh command value1 value2

For command, use one of the following options:
v Specify as i to insert value2 into data grid with key value1

v Specify as u to update object keyed by value1 to value2

v Specify as d to delete object keyed by value1

v Specify as g to retrieve and display object keyed by value1

© Copyright IBM Corp. 2009, 2011 1

Note: The installRoot/ObjectGrid/ gettingstarted/src/Client.java file is the
client program that demonstrates how to connect to a catalog server, obtain an
ObjectGrid instance, and use the ObjectMap API.

Basic steps

Use the following steps to start your first data grid and run a client to interact
with the data grid.
1. Open a terminal session or command line window.
2. Use the following command to navigate to the gettingstarted directory:

cd installRoot/ObjectGrid/gettingstarted

Substitute installRoot with the path to the eXtreme Scale installation root
directory or the root file path of the extracted eXtreme Scale trial installRoot.

3. Set or export the JAVA_HOME environmental variable to reference a valid JDK
or JRE Version 1.5 or later installation directory.

UNIX Linux export JAVA_HOME=Java_home_directory

Windows set JAVA_HOME=Java_home_directory

4. Run the following script to start a catalog service process on localhost:

v UNIX Linux ./runcat.sh

v Windows runcat.bat

The catalog service process runs in the current terminal window.
5. Open another terminal session or command line window, and run the

following command to start a container server instance:

v UNIX Linux ./runcontainer.sh server0

v Windows runcontainer.bat server0

The container server runs in the current terminal window. You can repeat step
5 and 6 if you want to start more container server instances to support
replication.

6. Open another terminal session or command line window to run client
commands.
v Add data to the data grid:

– UNIX Linux ./runclient.sh i key1 helloWorld

– Windows runclient.bat i key1 helloWorld

v Search and display the value:

– UNIX Linux ./runclient.sh g key1

– Windows runclient.bat g key1

v Update the value:

– UNIX Linux ./runclient.sh u key1 goodbyeWorld

– Windows runclient.bat u key1 goodbyeWorld

v Delete the value:

– UNIX Linux ./runclient.sh d key1

– Windows runclient.bat d key1

7. Use <ctrl+c> to stop the catalog service process and container servers in the
respective windows.

2 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

Defining an ObjectGrid

The sample uses the objectgrid.xml and deployment.xml files that are in the
installRoot/ObjectGrid/gettingstarted/xml directory to start a container server.
The objectgrid.xml file is the ObjectGrid descriptor XML file and the
deployment.xml file is the ObjectGrid deployment policy descriptor XML file. Both
files together define a distributed ObjectGrid topology.

ObjectGrid descriptor XML file

An ObjectGrid descriptor XML file is used to define the structure of the ObjectGrid
that is used by the application. It includes a list of BackingMap configurations.
These BackingMaps are the actual data storage for cached data. The following
example is a sample objectgrid.xml file. The first few lines of the file include the
required header for each ObjectGrid XML file. This example file defines the Grid
ObjectGrid with Map1 and Map2 BackingMaps.
<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">

<objectGrids>
<objectGrid name="Grid">

<backingMap name="Map1" />
<backingMap name="Map2" />

</objectGrid>
</objectGrids>

</objectGridConfig>

Deployment policy descriptor XML file

A deployment policy descriptor XML file is passed to an ObjectGrid container
server during start-up. A deployment policy must be used with an ObjectGrid
XML file and must be compatible with the ObjectGrid XML that is used with it.
For each objectgridDeployment element in the deployment policy, you must have a
corresponding ObjectGrid element in your ObjectGrid XML. The backingMap
elements that are defined within the objectgridDeployment element must be
consistent with the backingMaps found in the ObjectGrid XML. Every backingMap
must be referenced within one and only one mapSet.

The deployment policy descriptor XML file is intended to be paired with the
corresponding ObjectGrid XML, the objectgrid.xml file. In the following example,
the first few lines of the deployment.xml file include the required header for each
deployment policy XML file. The file defines the objectgridDeployment element for
the Grid ObjectGrid that is defined in the objectgrid.xml file. Both the Map1 and
Map2 BackingMaps that are defined within the Grid ObjectGrid are included in the
mapSet mapSet that has the numberOfPartitions, minSyncReplicas, and
maxSyncReplicas attributes configured.
<deploymentPolicy xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/deploymentPolicy
../deploymentPolicy.xsd"
xmlns="http://ibm.com/ws/objectgrid/deploymentPolicy">

<objectgridDeployment objectgridName="Grid">
<mapSet name="mapSet" numberOfPartitions="13" minSyncReplicas="0" maxSyncReplicas="1" >

<map ref="Map1"/>
<map ref="Map2"/>

</mapSet>
</objectgridDeployment>

</deploymentPolicy>

Chapter 1. Getting started with WebSphere eXtreme Scale 3

The numberOfPartitions attribute of the mapSet element specifies the number of
partitions for the mapSet. It is an optional attribute and the default is 1. The
number should be appropriate for the anticipated capacity of the grid.

The minSyncReplicas attribute of mapSet is to specify the minimum number of
synchronous replicas for each partition in the mapSet. It is an optional attribute
and the default is 0. Primary and replica are not placed until the domain can
support the minimum number of synchronous replicas. To support the
minSyncReplicas value, you need one more container than the value of
minSyncReplicas. If the number of synchronous replicas falls below the value of
minSyncReplicas, write transactions are no longer allowed for that partition.

The maxSyncReplicas attribute of mapSet is to specify the maximum number of
synchronous replicas for each partition in the mapSet. It is an optional attribute
and the default is 0. No other synchronous replicas are placed for a partition after
a domain reaches this number of synchronous replicas for that specific partition.
Adding containers that can support this ObjectGrid can result in an increased
number of synchronous replicas if your maxSyncReplicas value has not already
been met. The sample set the maxSyncReplicas to 1 means the domain will at most
place one synchronous replica. If you start more than one container server instance,
there will be only one synchronous replica placed in one of the container server
instances.

Using ObjectGrid

The Client.java file in the installRoot/ObjectGrid/ gettingstarted/src/
directory is the client program that demonstrates how to connect to catalog server,
obtain ObjectGrid instance, and use ObjectMap API.

From the perspective of a client application, using WebSphere eXtreme Scale can be
divided into the following steps.
1. Connecting to the catalog service by obtaining a ClientClusterContext instance.
2. Obtaining a client ObjectGrid instance.
3. Getting a Session instance.
4. Getting an ObjectMap instance.
5. Using the ObjectMap methods.

1. Connecting to the catalog service by obtaining a ClientClusterContext instance

To connect to the catalog server, use the connect method of ObjectGridManager
API. The connect method that is used by this sample only requires catalog server
endpoint in the format of hostname:port, such as localhost:2809. If the connection
to the catalog server succeeds, the connect method returns a ClientClusterContext
instance. The ClientClusterContext instance is required to obtain the ObjectGrid
from ObjectGridManager API. The following code snippet demonstrates how to
connect to a catalog server and obtain a ClientClusterContext instance.
ClientClusterContext ccc = ObjectGridManagerFactory.getObjectGridManager().connect(“localhost:2809”, null, null);

2. Obtaining an ObjectGrid instance

To obtain ObjectGrid instance, use the getObjectGrid method of the
ObjectGridManager API. The getObjectGrid method requires both the
ClientClusterContext instance and the name of the ObjectGrid instance. The
ClientClusterContext instance is obtained during connecting to catalog server. The
name of ObjectGrid is “Grid” that is specified in the objectgrid.xml file. The

4 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

following code snippet demonstrates how to obtain ObjectGrid by calling
getObjectGrid method of ObjectGridManager API.
ObjectGrid grid = ObjectGridManagerFactory.getObjectGridManager().getObjectGrid(ccc, “Grid”);

3. Getting a Session instance

You can get a Session from the obtained ObjectGrid instance. A Session instance is
required to get ObjectMap, and perform transaction demarcation. The following
code snippet demonstrates how to get Session by calling getSession method of
ObjectGrid API.
Session sess = grid.getSession();

4. Getting an ObjectMap instance

After getting a Session, you can get ObjectMap from a Session by calling getMap
method of Session API. You have to pass the name of map as parameter to getMap
method in order to get the ObjectMap. The following code snippet demonstrates
how to obtain ObjectMap by calling getMap method of Session API.
ObjectMap map1 = sess.getMap("Map1");

5. Using the ObjectMap methods

After an ObjectMap is obtained, you can use ObjectMap API. Remember
ObjectMap is a transactional map and requires transaction demarcation by using
the begin and commit methods of the Session API. If there is no explicit transaction
demarcation, ObjectMap operations run with auto-commit transactions.

The following code snippet demonstrates how to use ObjectMap API with
auto-commit transaction.
map1.insert(key1, value1);

The following code snippet demonstrates how to use ObjectMap API with explicit
transaction demarcation.
sess.begin();
map1.insert(key1, value1);
sess.commit();

Additional information

This sample demonstrates how to start catalog server and container server and
using ObjectMap API in stand-alone environment. You can also use the
EntityManager API.

In a WebSphere Application Server environment with WebSphere eXtreme Scale
installed or enabled, the most common scenario is a network-attached topology. In
a network-attached topology, the catalog server is hosted in the WebSphere
Application Server deployment manager process and each WebSphere Application
Server instance hosts an eXtreme Scale server automatically. Java Platform,
Enterprise Edition applications only need to include both the ObjectGrid descriptor
XML file and the ObjectGrid deployment policy descriptor XML file in the
META-INF directory of any module and the ObjectGrid becomes available
automatically. An application can then connect to a locally available catalog server
and obtain an ObjectGrid instance to use.

Chapter 1. Getting started with WebSphere eXtreme Scale 5

6 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

Chapter 2. Programming WebSphere eXtreme Scale

WebSphere eXtreme Scale provides several features that are accessed
programmatically using the Java programming language through application
programming interfaces (APIs) and system programming interfaces.

WebSphere eXtreme Scale APIs

When you are using eXtreme Scale APIs, you must distinguish between
transactional and non-transactional operations. A transactional operation is an
operation that is performed within a transaction. ObjectMap, EntityManager,
Query, and DataGrid API are transactional APIs that are contained inside the
Session that is a transactional container. Non-transactional operations have nothing
to do with a transaction, such as configuration operations.

The ObjectGrid, BackingMap, and plug-in APIs are non-transactional. The
ObjectGrid, BackingMap, and other configuration APIs are categorized as
ObjectGrid Core API. Plug-ins are for customizing the cache to achieve the
functions that you want, and are categorized as the System Programming API. A
plug-in in eXtreme Scale is a component that provides a certain type of function to
the pluggable eXtreme Scale components that include ObjectGrid and BackingMap.
A feature represents a specific function or characteristic of an eXtreme Scale
component, including ObjectGrid, Session, BackingMap, ObjectMap, and so on.
Typically, features are configurable with configuration APIs. Plug-ins can be
built-in, but might require that you develop your own plug-ins in some situations.

You can normally configure the ObjectGrid and BackingMap to meet your
application requirements. When the application has special requirements, consider
using specialized plug-ins. WebSphere eXtreme Scale might have built-in plug-ins
that meet your requirements. For example, if you need a peer-to-peer replication
model between two local ObjectGrid instances or two distributed eXtreme Scale
grids, the built-in JMSObjectGridEventListener is available. If none of the built-in
plug-ins can solve your business problems, refer to the System Programming API
to provide your own plug-ins.

ObjectMap is a simple map-based API. If the cached objects are simple and no
relationship is involved, the ObjectMap API is ideal for your application. If object
relationships are involved, use the EntityManager API, which supports graph-like
relationships.

Query is a powerful mechanism for finding data in the ObjectGrid. Both Session
and EntityManager provide the traditional query capability.

The DataGrid API is a powerful computing capability in a distributed eXtreme
Scale environment that involves many machines, replicas, and partitions.
Applications can run business logic in parallel in all of the nodes in the distributed
eXtreme Scale environment. The application can obtain the DataGrid API through
the ObjectMap API.

The WebSphere eXtreme Scale REST data service is a Java HTTP
service that is compatible with Microsoft WCF Data Services (formally ADO.NET
Data Services) and implements the Open Data Protocol (OData). The REST data

© Copyright IBM Corp. 2009, 2011 7

service allows any HTTP client to access an eXtreme Scale grid. It is compatible
with the WCF Data Services support that is supplied with the Microsoft .NET
Framework 3.5 SP1. RESTful applications can be developed with the rich tooling
provided by Microsoft Visual Studio 2008 SP1. For more details, refer to the
eXtreme Scale REST data service user guide.

8 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

ftp://public.dhe.ibm.com/software/webserver/appserv/library/v70/wxsrestservice.pdf

Chapter 3. Accessing data in WebSphere eXtreme Scale

After an application has a reference to an ObjectGrid instance or a client
connection to a remote grid, you can access and interact with data in your
WebSphere eXtreme Scale configuration. With the ObjectGridManager API, use one
of the createObjectGrid methods to create a local instance, or the getObjectGrid
method for a client instance with a distributed grid.

A thread in an application needs its own Session. When an application wants to
use the ObjectGrid on a thread, it should just call one of the getSession methods to
obtain a thread. This operation is cheap--there is no need to pool these operations
in most cases. If the application is using a dependency injection framework such as
Spring, you can inject a Session into an application bean when necessary.

After you obtain a Session, the application can access data stored in maps in the
ObjectGrid. If the ObjectGrid uses entities, you can use the EntityManager API,
which you can obtain with the Session.getEntityManager method. Because it is
closer to Java specifications, the EntityManager interface is simpler than the
map-based API. However, the EntityManager API carries a performance overhead
because it tracks changes in objects. The map-based API is obtained by using the
Session.getMap method.

WebSphere eXtreme Scale uses transactions. When an application interacts with a
Session, it must be in the context of a transaction. A transaction is begun and
committed or rolled back using the Session.begin, Session.commit, and
Session.rollback methods on the Session object. Applications can also work in
auto-commit mode, where the Session automatically begins and commits a
transaction whenever the application interacts with Maps. However, the
auto-commit mode is slower.

The logic of using transactions

Transactions may seem to be slow, but eXtreme Scale uses transactions for three
reasons:
1. To allow rollback of changes if an exception occurs or business logic needs to

undo state changes.
2. To hold locks on data and release locks within the lifetime of a transaction,

allowing a set of changes to be made atomically, that is, all changes or no
changes to data.

3. To produce an atomic unit of replication.

WebSphere eXtreme Scale lets a Session customize how much transaction is really
needed. An application can turn off rollback support and locking but does so at a
cost to the application. The application must handle the lack of these features itself.

For example, an application can turn off locking by configuring the BackingMap
locking strategy to be NONE. This strategy is fast, but concurrent transactions can
now modify the same data with no protection from each other. The application is
responsible for all locking and data consistency when NONE is used.

An application can also change the way objects are copied when accessed by the
transaction . The application can specify how objects are copied with the

© Copyright IBM Corp. 2009, 2011 9

ObjectMap.setCopyMode method. With this method, you can turn off CopyMode.
Turning off CopyMode is normally used for read-only transactions if different
values can be returned for the same object within a transaction. Different values
can be returned for the same object within a transaction.

For example, if the transaction called the ObjectMap.get method for the object at
T1, it got the value at that point in time. If it calls the get method again within that
transaction at a later time T2, another thread might have changed the value.
Because the value has been changed by another thread, the application sees a
different value. If the application modifies an object retrieved using a NONE
CopyMode value, it is changing the committed copy of that object directly. Rolling
back the transaction has no meaning in this mode. You are changing the only copy
in the ObjectGrid. Although using the NONE CopyMode is fast, be aware of its
consequences. An application that uses a NONE CopyMode must never roll back
the transaction. If the application rolls back the transaction, the indexes are not
updated with the changes and the changes are not replicated if replication is turned
on. The default values are easy to use and less prone to errors. If you start trading
performance in exchange for less reliable data, the application needs to be aware of
what it is doing to avoid unintended problems.

CAUTION:
Be careful when you are changing either the locking or the CopyMode values. If
you change the values, unpredictable application behavior will occur.

Interacting with stored data

After a session has been obtained, you can use the following code fragment to use
the Map API for inserting data.
Session session = ...;
ObjectMap personMap = session.getMap("PERSON");
session.begin();
Person p = new Person();
p.name = "John Doe";
personMap.insert(p.name, p);
session.commit();

The same example using the EntityManager API follows. This code sample
assumes that the Person object is mapped to an Entity.
Session session = ...;
EntityManager em = session.getEntityManager();
session.begin();
Person p = new Person();
p.name = "John Doe";
em.persist(p);
session.commit();

The pattern is designed to obtain references to the ObjectMaps for the Maps that
the thread will work with, start a transaction, work with the data, then commit the
transaction.

The ObjectMap interface has the typical Map operations such as put, get and
remove. However, use the more specific operation names such as: get,
getForUpdate, insert, update and remove. These method names convey the intent
more precisely that the traditional Map APIs.

You can also use the indexing support, which is flexible.

The following is an example for updating an Object:

10 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

session.begin();
Person p = (Person)personMap.getForUpdate("John Doe");
p.name = "John Doe";
p.age = 30;
personMap.update(p.name, p);
session.commit();

The application normally uses the getForUpdate method rather than a simple get
to lock the record. The update method must be called to actually provide the
updated value to the Map. If update is not called then the Map is unchanged. The
following is the same fragment using the EntityManager API:
session.begin();
Person p = (Person)em.findForUpdate(Person.class, "John Doe");
p.age = 30;
session.commit();

The EntityManager API is simpler than the Map approach. In this case, eXtreme
Scale finds the Entity and returns a managed object to the application. The
application modifies the object and commits the transaction, and eXtreme Scale
tracks changes to managed objects automatically at commit time and performs the
necessary updates.

Transactions and partitions

WebSphere eXtreme Scale transactions can only update a single partition.
Transactions from a client can read from multiple partitions, but they can only
update one partition. If an application attempts to update two partitions, then the
transaction fails and is rolled back. A transaction that is using an embedded
ObjectGrid (grid logic) has no routing capability and can only see data in the local
partition. This business logic can always get a second session that is a true client
session to access other partitions. However, this transaction would be an
independent transaction.

Queries and partitions

If a transaction has already searched for an Entity, the transaction is associated
with the partition for that Entity. Any queries that run on a transaction that is
associated with an Entity are routed to the associated partition.

If a query is run on a transaction before it is associated with a partition, you must
set the partition ID to use for the query. The partition ID is an integer value. The
query is then routed to that partition.

Queries only search within a single partition. However, you can use the DataGrid
APIs to run the same query in parallel on all partitions or a subset of partitions.
Use the DataGrid APIs to find an entry that might be in any partition.

The REST data service allows any HTTP client to access a
WebSphere eXtreme Scale grid, and is compatible with WCF Data Services in the
Microsoft .NET Framework 3.5 SP1. For more information see the user guide for
the eXtreme Scale REST data service

.

Chapter 3. Accessing data in WebSphere eXtreme Scale 11

ftp://public.dhe.ibm.com/software/webserver/appserv/library/v70/wxsrestservice.pdf

Interacting with an ObjectGrid using the ObjectGridManager
The ObjectGridManagerFactory class and the ObjectGridManager interface provide
a mechanism to create, access, and cache ObjectGrid instances. The
ObjectGridManagerFactory class is a static helper class to access the
ObjectGridManager interface, a singleton. The ObjectGridManager interface
includes several convenience methods to create instances of an ObjectGrid object.
The ObjectGridManager interface also facilitates creation and caching of ObjectGrid
instances that can be accessed by several users.

Programming model

Before using eXtreme Scale's functionality as an in-memory data grid, you must
create and interact with ObjectGrid instances with methods such as the following.
v createObjectGrid methods
v getObjectGrid methods
v removeObjectGrid methods
v controlling the life cycle of an ObjectGrid

createObjectGrid methods
This topic describes the seven createObjectGrid methods in the ObjectGridManager
interface. Each of these methods creates a local instance of an ObjectGrid.

Local in-memory instance

The following code snippet illustrates how to obtain and configure a local
ObjectGrid instance with eXtreme Scale.
// Obtain a local ObjectGrid reference

// you can create a new ObjectGrid, or get configured ObjectGrid
// defined in ObjectGrid xml file
ObjectGridManager objectGridManager =

ObjectGridManagerFactory.getObjectGridManager();
ObjectGrid ivObjectGrid =

objectGridManager.createObjectGrid("objectgridName");

// Add a TransactionCallback into ObjectGrid
HeapTransactionCallback tcb = new HeapTransactionCallback();
ivObjectGrid.setTransactionCallback(tcb);

// Define a BackingMap
// if the BackingMap is configured in ObjectGrid xml
// file, you can just get it.
BackingMap ivBackingMap = ivObjectGrid.defineMap("myMap");

// Add a Loader into BackingMap
Loader ivLoader = new HeapCacheLoader();
ivBackingMap.setLoader(ivLoader);

// initialize ObjectGrid
ivObjectGrid.initialize();

// Obtain a session to be used by the current thread.
// Session can not be shared by multiple threads
Session ivSession = ivObjectGrid.getSession();

// Obtaining ObjectMap from ObjectGrid Session
ObjectMap objectMap = ivSession.getMap("myMap");

12 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

Default shared configuration

The following code is a simple case of creating an ObjectGrid to share among
many users.
import com.ibm.websphere.objectgrid.ObjectGrid;
import com.ibm.websphere.objectgrid.ObjectGridException;
import com.ibm.websphere.objectgrid.ObjectGridManagerFactory;
import com.ibm.websphere.objectgrid.ObjectGridManager;
final ObjectGridManager oGridManager=

ObjectGridManagerFactory.getObjectGridManager();
ObjectGrid employees =
oGridManager.createObjectGrid("Employees",true);
employees.initialize();
employees.
/*sample continues..*/

The preceding Java code snippet creates and caches the Employees ObjectGrid. The
Employees ObjectGrid is initialized with the default configuration and is ready for
use. The second parameter in the createObjectGrid method is set to true, which
instructs the ObjectGridManager to cache the ObjectGrid instance it creates. If this
parameter is set to false, the instance is not cached. Every ObjectGrid instance has
a name, and the instance can be shared among many clients or users based on that
name.

If the objectGrid instance is used in peer-to-peer sharing, the caching must be set
to true. For more information on peer-to-peer sharing, see Distributing changes
between peer Java Virtual Machines.

XML configuration

WebSphere eXtreme Scale is highly configurable. The previous example
demonstrates how to create a simple ObjectGrid without any configuration. This
example shows you how to create a pre-configured ObjectdGrid instance that is
based on an XML configuration file. You can configure an ObjectGrid instance
programmatically or using an XML-based configuration file. You can also configure
ObjectGrid using a combination of both approaches. The ObjectGridManager
interface allows creation of an ObjectGrid instance based on the XML
configuration. The ObjectGridManager interface has several methods that take a
URL as an argument. Every XML file that is passed into the ObjectGridManager
must be validated against the schema. XML validation can be disabled only when
the file is previously validated and no changes have been made to the file since its
last validation. Disabling validation saves a small amount of overhead but
introduces the possibility of using an invalid XML file. The IBM® Java Developer
Kit (JDK) 1.4.2 has support for XML validation. When using a JDK that does not
have this support, Apache Xerces might be required to validate the XML.

The following Java code snippet demonstrates how to pass in an XML
configuration file to create an ObjectGrid.
import java.net.MalformedURLException;
import java.net.URL;
import com.ibm.websphere.objectgrid.ObjectGrid;
import com.ibm.websphere.objectgrid.ObjectGridException;
import com.ibm.websphere.objectgrid.ObjectGridManager;
import com.ibm.websphere.objectgrid.ObjectGridManagerFactory;
boolean validateXML = true; // turn XML validation on
boolean cacheInstance = true; // Cache the instance
String objectGridName="Employees"; // Name of Object Grid URL
allObjectGrids = new URL("file:test/myObjectGrid.xml");
final ObjectGridManager oGridManager=

Chapter 3. Accessing data in WebSphere eXtreme Scale 13

ObjectGridManagerFactory.getObjectGridManager();
ObjectGrid employees =
oGridManager.createObjectGrid(objectGridName, allObjectGrids,
bvalidateXML, cacheInstance);

The XML file can contain configuration information for several ObjectGrids. The
previous code snippet specifically returns ObjectGrid Employees, assuming that the
Employees configuration is defined in the file. For the XML syntax, see ObjectGrid
configuration. Seven createObjectGrid methods exist, and are documented in the
following code block.
/**
* A simple factory method to return an instance of an
* Object Grid. A unique name is assigned.
* The instance of ObjectGrid is not cached.
* Users can then use {@link ObjectGrid#setName(String)} to change the
* ObjectGrid name.
*
* @return ObjectGrid an instance of ObjectGrid with a unique name assigned
* @throws ObjectGridException any error encountered during the
* ObjectGrid creation
*/
public ObjectGrid createObjectGrid() throws ObjectGridException;

/**
* A simple factory method to return an instance of an ObjectGrid with the
* specified name. The instances of ObjectGrid can be cached. If an ObjectGrid
* with the this name has already been cached, an ObjectGridException
* will be thrown.
*
* @param objectGridName the name of the ObjectGrid to be created.
* @param cacheInstance true, if the ObjectGrid instance should be cached
* @return an ObjectGrid instance
* @this name has already been cached or
* any error during the ObjectGrid creation.
*/
public ObjectGrid createObjectGrid(String objectGridName, boolean cacheInstance)

throws ObjectGridException;

/**
* Create an ObjectGrid instance with the specified ObjectGrid name. The
* ObjectGrid instance created will be cached.
* @param objectGridName the Name of the ObjectGrid instance to be created.
* @return an ObjectGrid instance
* @throws ObjectGridException if an ObjectGrid with this name has already
* been cached, or any error encountered during the ObjectGrid creation
*/
public ObjectGrid createObjectGrid(String objectGridName)

throws ObjectGridException;

/**
* Create an ObjectGrid instance based on the specified ObjectGrid name and the
* XML file. The ObjectGrid instance defined in the XML file with the specified
* ObjectGrid name will be created and returned. If such an ObjectGrid
* cannot be found in the xml file, an exception will be thrown.
*
* This ObjecGrid instance can be cached.
*
* If the URL is null, it will be simply ignored. In this case, this method behaves
* the same as {@link #createObjectGrid(String, boolean)}.
*
* @param objectGridName the Name of the ObjectGrid instance to be returned. It
* must not be null.
* @param xmlFile a URL to a wellformed xml file based on the ObjectGrid schema.
* @param enableXmlValidation if true the XML is validated
* @param cacheInstance a boolean value indicating whether the ObjectGrid
* instance(s)

14 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

* defined in the XML will be cached or not. If true, the instance(s) will
* be cached.
*
* @throws ObjectGridException if an ObjectGrid with the same name
* has been previously cached, no ObjectGrid name can be found in the xml file,
* or any other error during the ObjectGrid creation.
* @return an ObjectGrid instance
* @see ObjectGrid
*/
public ObjectGrid createObjectGrid(String objectGridName, final URL xmlFile,
final boolean enableXmlValidation, boolean cacheInstance)
throws ObjectGridException;

/**
* Process an XML file and create a List of ObjectGrid objects based
* upon the file.
* These ObjecGrid instances can be cached.
* An ObjectGridException will be thrown when attempting to cache a
* newly created ObjectGrid
* that has the same name as an ObjectGrid that has already been cached.
*
* @param xmlFile the file that defines an ObjectGrid or multiple
* ObjectGrids
* @param enableXmlValidation setting to true will validate the XML
* file against the schema
* @param cacheInstances set to true to cache all ObjectGrid instances
* created based on the file
* @return an ObjectGrid instance
* @throws ObjectGridException if attempting to create and cache an
* ObjectGrid with the same name as
* an ObjectGrid that has already been cached, or any other error
* occurred during the
* ObjectGrid creation
*/
public List createObjectGrids(final URL xmlFile, final boolean enableXmlValidation,
boolean cacheInstances) throws ObjectGridException;

/** Create all ObjectGrids that are found in the XML file. The XML file will be
* validated against the schema. Each ObjectGrid instance that is created will
* be cached. An ObjectGridException will be thrown when attempting to cache a
* newly created ObjectGrid that has the same name as an ObjectGrid that has
* already been cached.
* @param xmlFile The XML file to process. ObjectGrids will be created based
* on what is in the file.
* @return A List of ObjectGrid instances that have been created.
* @throws ObjectGridException if an ObjectGrid with the same name as any of
* those found in the XML has already been cached, or
* any other error encounterred during ObjectGrid creation.
*/
public List createObjectGrids(final URL xmlFile) throws ObjectGridException;

/**
* Process the XML file and create a single ObjectGrid instance with the
* objectGridName specified only if an ObjectGrid with that name is found in
* the file. If there is no ObjectGrid with this name defined in the XML file,
* an ObjectGridException
* will be thrown. The ObjectGrid instance created will be cached.
* @param objectGridName name of the ObjectGrid to create. This ObjectGrid
* should be defined in the XML file.
* @param xmlFile the XML file to process
* @return A newly created ObjectGrid
* @throws ObjectGridException if an ObjectGrid with the same name has been
* previously cached, no ObjectGrid name can be found in the xml file,
* or any other error during the ObjectGrid creation.
*/
public ObjectGrid createObjectGrid(String objectGridName, URL xmlFile)

throws ObjectGridException;

Chapter 3. Accessing data in WebSphere eXtreme Scale 15

Client hangs during a getObjectGrid method call

A client might seem to hang when calling the getObjectGrid method on the
ObjectGridManager or throw an exception:
com.ibm.websphere.projector.MetadataException. The EntityMetadata repository is
not available and the timeout threshold is reached. The reason is the client is
waiting for the entity metadata on the ObjectGrid server to become available. This
error can occur when a container has been started, but the initial number of
containers or minimum number of synchronous replicas has not been reached.
Examine the deployment policy for the ObjectGrid and verify that the number of
active containers is greater than or equal to both the numInitialContainers and
minSyncReplicas attributes in the deployment policy descriptor file.

getObjectGrid methods
Use the ObjectGridManager.getObjectGrid methods to retrieve cached instances.

Retrieving a cached instance

Since the Employees ObjectGrid instance was cached by the ObjectGridManager
interface, another user can access it with the following code snippet:
ObjectGrid myEmployees = oGridManager.getObjectGrid("Employees");

The following are the two getObjectGrid methods that return cached ObjectGrid
instances:
v Retrieving all cached instances

To obtain all of the ObjectGrid instances that have been previously cached, use
the getObjectGrids method, which returns a list of each instance. If no cached
instances exist, the method will return null.

v Retrieving a cached instance by name

To obtain a single cached instance of an ObjectGrid, use getObjectGrid(String
objectGridName), passing the name of the cached instance into the method. The
method either returns the ObjectGrid instance with the specified name or returns
null if there is no ObjectGrid instance with that name.

Note: You can also use the getObjectGrid method to connect to a distributed grid.
See “Connecting to a distributed ObjectGrid” on page 17 for more information.

removeObjectGrid methods
You can use two different removeObjectGrid methods to remove ObjectGrid
instances from the cache.

Remove an ObjectGrid instance

To remove ObjectGrid instances from the cache, use one of the removeObjectGrid
methods. The ObjectGridManager does not keep a reference of the instances that
are removed. Two remove methods exist. One method takes a boolean parameter.
If the boolean parameter is set to true, the destroy method is called on the
ObjectGrid. The call to the destroy method on the ObjectGrid shuts down the
ObjectGrid and frees up any resources the ObjectGrid is using. A description of
how to use the two removeObjectGrid methods follows:
/**
* Remove an ObjectGrid from the cache of ObjectGrid instances
*
* @param objectGridName the name of the ObjectGrid instance to remove

16 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

* from the cache
*
* @throws ObjectGridException if an ObjectGrid with the objectGridName
* was not found in the cache
*/
public void removeObjectGrid(String objectGridName) throws ObjectGridException;

/**
* Remove an ObjectGrid from the cache of ObjectGrid instances and
* destroy its associated resources
*
* @param objectGridName the name of the ObjectGrid instance to remove
* from the cache
*
* @param destroy destroy the objectgrid instance and its associated
* resources
*
* @throws ObjectGridException if an ObjectGrid with the objectGridName
* was not found in the cache
*/
public void removeObjectGrid(String objectGridName, boolean destroy)
throws ObjectGridException;

Connecting to a distributed ObjectGrid
You can connect to a distributed ObjectGrid with a connection end point for the
catalog service. You must have the host name and endpoint port of the catalog
server to which you want to connect.

In order to connect to a distributed data grid, you must have configured your
server-side environment with a catalog service and container servers.

The getObjectGrid(ClientClusterContext ccc, String objectGridName) method
connects to the specified catalog service and returns a client ObjectGrid instance
corresponding to a server-side ObjectGrid instance.

The following code snippet is an example of how to connect to a distributed data
grid.

// Create an ObjectGridManager instance.

ObjectGridManager ogm = ObjectGridManagerFactory.getObjectGridManager();

// Obtain a ClientClusterContext by connecting to a catalog
// server based distributed ObjectGrid. You have to provide
// a connection end point for your catalog server in the format
// of hostName:endPointPort. The hostName is the machine
// where the catalog server resides, and the endPointPort is
// the catalog server’s listening port, whose default is 2809.

ClientClusterContext ccc = ogm.connect("localhost:2809", null, null);

// Obtain a distributed ObjectGrid using ObjectGridManager and providing
// the ClientClusterContext.

ObjectGrid og = ogm.getObjectGrid(ccc, "objectgridName");

WebSphere eXtreme Scale client configuration
You can configure an eXtreme Scale client based on your requirements such as the
need to override settings.

You can configure an eXtreme Scale client in the following ways:
v XML configuration

Chapter 3. Accessing data in WebSphere eXtreme Scale 17

v Programmatic configuration
v Spring Framework configuration
v Disabling the near cache

You can override the following plug-ins on a client:
v ObjectGrid plug-ins

– TransactionCallback plug-in
– ObjectGridEventListener plug-in

v BackingMap plug-ins

– Evictor plug-in
– MapEventListener plug-in
– numberOfBuckets attribute
– ttlEvictorType attribute
– timeToLive attribute

Configure the client with XML

An ObjectGrid XML file can be used to alter settings on the client side. To change
the settings on an eXtreme Scale client, you must create an ObjectGrid XML file
that is similar in structure to the file that was used for the eXtreme Scale server.

Assume that the following XML file was paired with a deployment policy XML
file, and these files were used to start an eXtreme Scale server.
companyGridServerSide.xml

<?xml version="1.0" encoding="UTF-8"?>
<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">

<objectGrids>
<objectGrid name="CompanyGrid">

<bean id="TransactionCallback"
className="com.company.MyTxCallback" />

<bean id="ObjectGridEventListener"
className="com.company.MyOgEventListener" />

<backingMap name="Customer"
pluginCollectionRef="customerPlugins" />

<backingMap name="Item" />
<backingMap name="OrderLine" numberOfBuckets="1049"

timeToLive="1600" ttlEvictorType="LAST_ACCESS_TIME" />
<backingMap name="Order" lockStrategy="PESSIMISTIC"

pluginCollectionRef="orderPlugins" />
</objectGrid>

</objectGrids>

<backingMapPluginCollections>
<backingMapPluginCollection id="customerPlugins">

<bean id="Evictor"
className="com.ibm.websphere.objectGrid.plugins.builtins.LRUEvictor" />

<bean id="MapEventListener"
className="com.company.MyMapEventListener" />

</backingMapPluginCollection>
<backingMapPluginCollection id="orderPlugins">

<bean id="MapIndexPlugin"
className="com.company.MyMapIndexPlugin" />

</backingMapPluginCollection>
</backingMapPluginCollections>

</objectGridConfig>

On an eXtreme Scale server, the ObjectGrid instance named CompanyGrid behaves
as defined by the companyGridServerSide.xml file. By default, the CompanyGrid
client has the same settings as the CompanyGrid instance running on the server.
However, some of the settings can be overridden on the client, as follows:
1. Create a client-specific ObjectGrid instance.
2. Copy the ObjectGrid XML file that was used to open the server.

18 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

3. Edit the new file to customize for the client side.
v To set or update any of the attributes on the client, specify a new value or

change the existing value.
v To remove a plug-in from the client, use the empty string as the value for the

className attribute.
v To change an existing plug-in, specify a new value for the className

attribute.
v You can also add any plug-in supported for a client override:

TRANSACTION_CALLBACK, OBJECTGRID_EVENT_LISTENER, EVICTOR,
MAP_EVENT_LISTENER.

4. Create a client with the newly created client-override XML file.

The following ObjectGrid XML file can be used to specify some of the attributes
and plug-ins on the CompanyGrid client.
companyGridClientSide.xml

<?xml version="1.0" encoding="UTF-8"?>
<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">

<objectGrids>
<objectGrid name="CompanyGrid">

<bean id="TransactionCallback"
className="com.company.MyClientTxCallback" />

<bean id="ObjectGridEventListener" className="" />
<backingMap name="Customer" numberOfBuckets="1429"

pluginCollectionRef="customerPlugins" />
<backingMap name="Item" />
<backingMap name="OrderLine" numberOfBuckets="701"

timeToLive="800" ttlEvictorType="LAST_ACCESS_TIME" />
<backingMap name="Order" lockStrategy="PESSIMISTIC"

pluginCollectionRef="orderPlugins" />
</objectGrid>

</objectGrids>

<backingMapPluginCollections>
<backingMapPluginCollection id="customerPlugins">

<bean id="Evictor"
className="com.ibm.websphere.objectGrid.plugins.builtins.LRUEvictor" />

<bean id="MapEventListener" className="" />
</backingMapPluginCollection>
<backingMapPluginCollection id="orderPlugins">

<bean id="MapIndexPlugin"
className="com.company.MyMapIndexPlugin" />

</backingMapPluginCollection>
</backingMapPluginCollections>

</objectGridConfig>

The companyGridClientSide.xml file overrides several attributes and plug-ins on
the CompanyGrid client as follows:
v The TransactionCallback on the client is com.company.MyClientTxCallback

instead of the server-side setting of com.company.MyTxCallback.
v The client does not have an ObjectGridEventListener plug-in because the

className value is the empty string.
v The client sets the numberOfBuckets to 1429 for the Customer backingMap,

retains its Evictor plug-in, and removes the MapEventListener plug-in.
v The numberOfBuckets and timeToLive attributes of the OrderLine backingMap

have changed
v Although a different lockStrategy attribute is specified, there is no effect because

the lockStrategy attribute is not supported for a client override.
v

To create the CompanyGrid client using the companyGridClientSide.xml file, pass
the ObjectGrid XML file as a URL to one of the connect methods on the
ObjectGridManager.
creating the client for XML

ObjectGridManager ogManager =
ObjectGridManagerFactory.ObjectGridManager();

Chapter 3. Accessing data in WebSphere eXtreme Scale 19

ClientClusterContext clientClusterContext =
ogManager.connect("MyServer1.company.com:2809", null, new URL(

"file:xml/companyGridClientSide.xml"));

Configure the client programmatically

You can also override client-side ObjectGrid settings programmatically. Create an
ObjectGridConfiguration object that is similar in structure to the server-side
ObjectGrid instance. The following code creates a client-side ObjectGrid instance
that is functionally equivalent to the client override in the previous section which
uses an XML file.
client-side override programmatically
ObjectGridConfiguration companyGridConfig = ObjectGridConfigFactory

.createObjectGridConfiguration("CompanyGrid");
Plugin txCallbackPlugin = ObjectGridConfigFactory.createPlugin(

PluginType.TRANSACTION_CALLBACK, "com.company.MyClientTxCallback");
companyGridConfig.addPlugin(txCallbackPlugin);

Plugin ogEventListenerPlugin = ObjectGridConfigFactory.createPlugin(
PluginType.OBJECTGRID_EVENT_LISTENER, "");

companyGridConfig.addPlugin(ogEventListenerPlugin);

BackingMapConfiguration customerMapConfig = ObjectGridConfigFactory
.createBackingMapConfiguration("Customer");

customerMapConfig.setNumberOfBuckets(1429);
Plugin evictorPlugin = ObjectGridConfigFactory.createPlugin(PluginType.EVICTOR,

"com.ibm.websphere.objectgrid.plugins.builtins.LRUEvictor");
customerMapConfig.addPlugin(evictorPlugin);

companyGridConfig.addBackingMapConfiguration(customerMapConfig);

BackingMapConfiguration orderLineMapConfig = ObjectGridConfigFactory
.createBackingMapConfiguration("OrderLine");

orderLineMapConfig.setNumberOfBuckets(701);
orderLineMapConfig.setTimeToLive(800);
orderLineMapConfig.setTtlEvictorType(TTLType.LAST_ACCESS_TIME);

companyGridConfig.addBackingMapConfiguration(orderLineMapConfig);

List ogConfigs = new ArrayList();
ogConfigs.add(companyGridConfig);

Map overrideMap = new HashMap();
overrideMap.put(CatalogServerProperties.DEFAULT_DOMAIN, ogConfigs);

ogManager.setOverrideObjectGridConfigurations(overrideMap);
ClientClusterContext client = ogManager.connect(catalogServerAddresses, null, null);
ObjectGrid companyGrid = ogManager.getObjectGrid(client, objectGridName);

The ObjectGridManager instance ogManager checks for overrides only in the
ObjectGridConfiguration and BackingMapConfiguration objects that you include in
the overrideMap Map. For instance, the previous code overrides the number of
buckets on the OrderLine Map. However, the Order map remains unchanged on
the client side because no configuration for that map is included.

Configure the client in the Spring Framework

Client-side ObjectGrid settings can also be overridden using the Spring
Framework. The following example XML file shows how to build an
ObjectGridConfiguration element, and use it to override some client side settings.
This example calls the same APIs that are demonstrated in the programmatic
configuration. The example is also functionally equivalent to the example in the
ObjectGrid XML configuration.

20 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

client configuration with Spring

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN"
"http://www.springframework.org/dtd/spring-beans.dtd">

<beans>
<bean id="companyGrid" factory-bean="manager" factory-method="getObjectGrid"
singleton="true">
<constructor-arg type="com.ibm.websphere.objectgrid.ClientClusterContext">
<ref bean="client" />

</constructor-arg>
<constructor-arg type="java.lang.String" value="CompanyGrid" />

</bean>

<bean id="manager" class="com.ibm.websphere.objectgrid.ObjectGridManagerFactory"
factory-method="getObjectGridManager" singleton="true">
<property name="overrideObjectGridConfigurations">
<map>
<entry key="DefaultDomain">
<list>
<ref bean="ogConfig" />

</list>
</entry>

</map>
</property>

</bean>

<bean id="ogConfig"
class="com.ibm.websphere.objectgrid.config.ObjectGridConfigFactory"
factory-method="createObjectGridConfiguration">
<constructor-arg type="java.lang.String">
<value>CompanyGrid</value>

</constructor-arg>
<property name="plugins">
<list>

<bean class="com.ibm.websphere.objectgrid.config.ObjectGridConfigFactory"
factory-method="createPlugin">
<constructor-arg type="com.ibm.websphere.objectgrid.config.PluginType"
value="TRANSACTION_CALLBACK" />

<constructor-arg type="java.lang.String"
value="com.company.MyClientTxCallback" />

</bean>
<bean class="com.ibm.websphere.objectgrid.config.ObjectGridConfigFactory"
factory-method="createPlugin">
<constructor-arg type="com.ibm.websphere.objectgrid.config.PluginType"
value="OBJECTGRID_EVENT_LISTENER" />

<constructor-arg type="java.lang.String" value="" />
</bean>

</list>
</property>

<property name="backingMapConfigurations">
<list>

<bean class="com.ibm.websphere.objectgrid.config.ObjectGridConfigFactory"
factory-method="createBackingMapConfiguration">
<constructor-arg type="java.lang.String" value="Customer" />
<property name="plugins">

<bean class="com.ibm.websphere.objectgrid.config.ObjectGridConfigFactory"
factory-method="createPlugin">
<constructor-arg type="com.ibm.websphere.objectgrid.config.PluginType"

value="EVICTOR" />
<constructor-arg type="java.lang.String"

value="com.ibm.websphere.objectgrid.plugins.builtins.LRUEvictor" />
</bean>

</property>
<property name="numberOfBuckets" value="1429" />

</bean>
<bean class="com.ibm.websphere.objectgrid.config.ObjectGridConfigFactory"
factory-method="createBackingMapConfiguration">
<constructor-arg type="java.lang.String" value="OrderLine" />
<property name="numberOfBuckets" value="701" />

<property name="timeToLive" value="800" />
<property name="ttlEvictorType">

<value type="com.ibm.websphere.objectgrid.
TTLType">LAST_ACCESS_TIME</value>

</property>
</bean>

</list>
</property>

</bean>

Chapter 3. Accessing data in WebSphere eXtreme Scale 21

<bean id="client" factory-bean="manager" factory-method="connect"
singleton="true">
<constructor-arg type="java.lang.String">

<value>localhost:2809</value>
</constructor-arg>

<constructor-arg
type="com.ibm.websphere.objectgrid.security.

config.ClientSecurityConfiguration">
<null />

</constructor-arg>
<constructor-arg type="java.net.URL">
<null />

</constructor-arg>
</bean>

</beans>

After creating the XML file, load the file and build the ObjectGrid with the
following code snippet.
BeanFactory beanFactory = new XmlBeanFactory(new

UrlResource("file:test/companyGridSpring.xml"));

ObjectGrid companyGrid = (ObjectGrid) beanFactory.getBean("companyGrid");

Read about integrating with the Spring framework for more information.

Disable the client near cache

The near cache is enabled by default when locking is configured as optimistic or
none. Clients do not maintain a near cache when the locking setting is configured
as pessimistic.

To disable the near cache, you must set the numberOfBuckets attribute to 0 in the
client override ObjectGrid descriptor file.

See the information about map entry locking in the Administration Guide for more
information.

Controlling the life cycle of an ObjectGrid
You can use the ObjectGridManager interface to control the life cycle of an
ObjectGrid instance using either a startup bean or a servlet.

Managing life cycle with a startup bean

A startup bean is used to control the life cycle of an ObjectGrid instance. A startup
bean loads when an application starts. With a startup bean, code can run whenever
an application starts or stops as expected. To create a startup bean, use the home
com.ibm.websphere.startupservice.AppStartUpHome interface and use the remote
com.ibm.websphere.startupservice.AppStartUp interface. Implement the start and
stop methods on the bean. The start method is invoked whenever the application
starts up. The stop method is invoked when the application shuts down. The start
method is used to create ObjectGrid instances. The stop method is used to remove
ObjectGrid instances. A code snippet that demonstrates this ObjectGrid life-cycle
management in a startup bean follows:
public class MyStartupBean implements javax.ejb.SessionBean {

private ObjectGridManager objectGridManager;

/* The methods on the SessionBean interface have been
* left out of this example for the sake of brevity */

public boolean start(){
// Starting the startup bean

22 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

// This method is called when the application starts
objectGridManager = ObjectGridManagerFactory.getObjectGridManager();
try {

// create 2 ObjectGrids and cache these instances
ObjectGrid bookstoreGrid =

objectGridManager.createObjectGrid("bookstore", true);
bookstoreGrid.defineMap("book");
ObjectGrid videostoreGrid =

objectGridManager.createObjectGrid("videostore", true);
// within the JVM,
// these ObjectGrids can now be retrieved from the
//ObjectGridManager using the getObjectGrid(String) method

} catch (ObjectGridException e) {
e.printStackTrace();
return false;

}

return true;
}

public void stop(){
// Stopping the startup bean
// This method is called when the application is stopped
try {

// remove the cached ObjectGrids and destroy them
objectGridManager.removeObjectGrid("bookstore", true);
objectGridManager.removeObjectGrid("videostore", true);

} catch (ObjectGridException e) {
e.printStackTrace();

}
}

}

After the start method is called, the newly created ObjectGrid instances are
retrieved from the ObjectGridManager interface. For example, if a servlet is
included in the application, the servlet accesses the eXtreme Scale using the
following code snippet:
ObjectGridManager objectGridManager =
ObjectGridManagerFactory.getObjectGridManager();
ObjectGrid bookstoreGrid = objectGridManager.getObjectGrid("bookstore");
ObjectGrid videostoreGrid = objectGridManager.getObjectGrid("videostore");

Managing life cycle with a servlet

To manage the life cycle of an ObjectGrid in a servlet, you can use the init method
to create an ObjectGrid instance and the destroy method to remove the ObjectGrid
instance. If the ObjectGrid instance is cached, it is retrieved and manipulated in the
servlet code. Sample code that demonstrates ObjectGrid creation, manipulation,
and destruction within a servlet follows:
public class MyObjectGridServlet extends HttpServlet implements Servlet {

private ObjectGridManager objectGridManager;

public MyObjectGridServlet() {
super();

}

public void init(ServletConfig arg0) throws ServletException {
super.init();
objectGridManager = ObjectGridManagerFactory.getObjectGridManager();
try {

// create and cache an ObjectGrid named bookstore
ObjectGrid bookstoreGrid =

objectGridManager.createObjectGrid("bookstore", true);
bookstoreGrid.defineMap("book");

Chapter 3. Accessing data in WebSphere eXtreme Scale 23

} catch (ObjectGridException e) {
e.printStackTrace();

}
}

protected void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
ObjectGrid bookstoreGrid = objectGridManager.getObjectGrid("bookstore");
Session session = bookstoreGrid.getSession();
ObjectMap bookMap = session.getMap("book");
// perform operations on the cached ObjectGrid
// ...

}

public void destroy() {
super.destroy();
try {

// remove and destroy the cached bookstore ObjectGrid
objectGridManager.removeObjectGrid("bookstore", true);

} catch (ObjectGridException e) {
e.printStackTrace();

}
}

}

Accessing the ObjectGrid shard
WebSphere eXtreme Scale achieves high processing rates by moving the logic to
where the data is and returning only results back to the client.

Application logic in a client Java virtual machine (JVM) needs to pull data from
the server JVM that is holding the data and push it back when the transaction
commits. This process slows down the rate the data can be processed. If the
application logic was on the same JVM as the shard that is holding the data, then
the network latency and marshalling cost is eliminated and can provide a
significant performance boost.

Local reference to shard data

The ObjectGrid APIs provide a Session to the server-side method. This session is a
direct reference to the data for that shard. No routing logic is on that path. The
application logic can work with the data for that shard directly. The session cannot
be used to access data in another partition because no routing logic exists.

A Loader plug-in also provides a way to receive an event when a shard becomes a
primary partition. An application can implement a Loader and implement the
ReplicaPreloadController interface. The check preload status method is only called
when a shard becomes a primary. The session provided to that method is a local
reference to the shards data. This approach is typically used if a partition primary
needs to start some threads or subscribe to a message fabric for partition-related
traffic. It might start a thread to listen for messages in a local Map using the
getNextKey API.

Collocated client-server optimization

If an application uses the client APIs to access a partition that happens to be
collocated with the JVM that contains the client, then the network is avoided but
some marshalling still occurs because of current implementation issues. If a
partitioned grid is used, then no impact on the performance of the application is
made because (N-1)/N number of calls route to a different JVM. If you need local

24 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

access always with a shard, then use the Loader or ObjectGrid APIs to invoke that
logic.

Using Sessions to access data in the grid
Applications can begin and end transactions through the Session interface. The
Session interface also provides access to the application-based ObjectMap and
JavaMap interfaces.

Each ObjectMap or JavaMap instance is directly tied to a specific Session object.
Each thread that wants access to an eXtreme Scale must first obtain a Session from
the ObjectGrid object. A Session instance cannot be shared concurrently between
threads. WebSphere eXtreme Scale does not use any thread local storage, but
platform restrictions might limit the opportunity to pass a Session from one thread
to another.

Methods

The following methods are available with the Session interface. See the API
documentation for more information about the following methods:
public interface Session {

ObjectMap getMap(String cacheName) throws UndefinedMapException;

void begin() throws TransactionAlreadyActiveException, TransactionException;

void beginNoWriteThrough() throws TransactionAlreadyActiveException,
TransactionException;

public void commit() throws NoActiveTransactionException, TransactionException;

public void rollback() throws NoActiveTransactionException, TransactionException;

public void flush() throws TransactionException;

TxID getTxID() throws NoActiveTransactionException;

boolean isWriteThroughEnabled();

void setTransactionType(String tranType);

public void processLogSequence(LogSequence logSequence) throws
NoActiveTransactionException, UndefinedMapException, ObjectGridException;

ObjectGrid getObjectGrid();

public void setTransactionTimeout(int timeout);
public int getTransactionTimeout();
public boolean transactionTimedOut();

public boolean isCommitting();
public boolean isFlushing();

public void markRollbackOnly(Throwable t) throws NoActiveTransactionException;
public boolean isMarkedRollbackOnly();

}

Get method

An application obtains a Session instance from an ObjectGrid object using the
ObjectGrid.getSession method. The following example demonstrates how to obtain
a Session instance:

ObjectGrid objectGrid = ...; Session sess = objectGrid.getSession();

After a Session is obtained, the thread keeps a reference to the session for its own
use. Calling the getSession method multiple times returns a new Session object
each time.

Transactions and Session methods

Chapter 3. Accessing data in WebSphere eXtreme Scale 25

A Session can be used to begin, commit, or rollback transactions. Operations
against BackingMaps using ObjectMaps and JavaMaps are most efficiently
performed within a Session transaction. After a transaction has started, any
changes to one or more BackingMaps in that transaction scope are stored in a
special transaction cache until the transaction is committed. When a transaction is
committed, the pending changes are applied to the BackingMaps and Loaders and
become visible to any other clients of that ObjectGrid.

WebSphere eXtreme Scale also supports the ability to automatically commit
transactions, also known as auto-commit. If any ObjectMap operations are
performed outside of the context of an active transaction, an implicit transaction is
started before the operation and the transaction is automatically committed before
returning control to the application.
Session session = objectGrid.getSession();
ObjectMap objectMap = session.getMap("someMap");
session.begin();
objectMap.insert("key1", "value1");
objectMap.insert("key2", "value2");
session.commit();
objectMap.insert("key3", "value3"); // auto−commit

Session.flush method

The Session.flush method only makes sense when a Loader is associated with a
BackingMap. The flush method invokes the Loader with the current set of changes
in the transaction cache. The Loader applies the changes to the backend. These
changes are not committed when the flush is invoked. If a Session transaction is
committed after a flush invocation, only updates that happen after the flush
invocation are applied to the Loader. If a Session transaction is rolled back after a
flush invocation, the flushed changes are discarded with all other pending changes
in the transaction. Use the Flush method sparingly because it limits the
opportunity for batch operations against a Loader. Following is an example of the
usage of the Session.flush method:
Session session = objectGrid.getSession();
session.begin();
// make some changes
...
session.flush(); // push these changes to the Loader, but don’t commit yet
// make some more changes
...
session.commit();

NoWriteThrough method

Some eXtreme Scale maps are backed by a Loader, which provides persistent
storage for the data in the map. Sometimes it is useful to commit data just to the
eXtreme Scale map and not push data out to the Loader. The Session interface
provides the beginNoWriteThough method for this purpose. The
beginNoWriteThrough method starts a transaction like the begin method. With the
beginNoWriteThrough method, when the transaction is committed, the data is only
committed to the eXtreme Scale in-memory map and is not committed to the
persistent storage that is provided by the Loader. This method is very useful when
performing data preload on the map.

When using a distributed ObjectGrid instance, the beginNoWriteThrough method
is useful for making changes to the near cache only, without modifying the far
cache on the server. If the data is known to be stale in the near cache, using the

26 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

beginNoWriteThrough method can allow entries to be invalidated on the near
cache without invalidating them on the server as well.

The Session interface also provides the isWriteThroughEnabled method to
determine what type of transaction is currently active.
Session session = objectGrid.getSession();
session.beginNoWriteThrough();
// make some changes ...
session.commit(); // these changes will not get pushed to the Loader

Obtain the TxID object method

The TxID object is an opaque object that identifies the active transaction. Use the
TxID object for the following purposes:
v For comparison when you are looking for a particular transaction.
v To store shared data between the TransactionCallback and Loader objects.

See TransactionCallback plug-in and Loaders for additional information about the
Object slot feature.

Performance monitoring method

If you are using eXtreme Scale within WebSphere Application Server, it might be
necessary to reset the transaction type for performance monitoring. You can set the
transaction type with the setTransactionType method. See Monitoring ObjectGrid
performance with WebSphere Application Server performance monitoring
infrastructure (PMI) for more information about the setTransactionType method.

Process a complete LogSequence method

WebSphere eXtreme Scale can propagate sets of map changes to ObjectGrid
listeners as a means of distributing maps from one Java virtual machine to another.
To make it easier for the listener to process the received LogSequences, the Session
interface provides the processLogSequence method. This method examines each
LogElement within the LogSequence and performs the appropriate operation, for
example, insert, update, invalidate, and so on, against the BackingMap that is
identified by the LogSequence MapName. An ObjectGrid Session must be available
before the processLogSequence method is invoked. The application is also
responsible for issuing the appropriate commit or rollback calls to complete the
Session. Autocommit processing is not available for this method invocation.
Normal processing by the receiving ObjectGridEventListener at the remote JVM
would be to start a Session using the beginNoWriteThrough method, which
prevents endless propagation of changes, followed by a call to this
processLogSequence method, and then committing or rolling back the transaction.
// Use the Session object that was passed in during
//ObjectGridEventListener.initialization...
session.beginNoWriteThrough();
// process the received LogSequence
try {
session.processLogSequence(receivedLogSequence);
} catch (Exception e) {
session.rollback(); throw e;
}
// commit the changes
session.commit();

markRollbackOnly method

Chapter 3. Accessing data in WebSphere eXtreme Scale 27

This method is used to mark the current transaction as "rollback only". Marking a
transaction "rollback only" ensures that even if the commit method is called by
application, the transaction is rolled back. This method is typically used by
ObjectGrid itself or by the application when it knows that data corruption could
occur if the transaction was allowed to be committed. After this method is called,
the Throwable object that is passed to this method is chained to the
com.ibm.websphere.objectgrid.TransactionException exception that results by the
commit method if it is called on a Session that was previously marked a "rollback
only". Any subsequent calls to this method for a transaction that is already marked
as "rollback only" is ignored. That is, only the first call that passes a non-null
Throwable reference is used. Once the marked transaction is completed, the
"rollback only" mark is removed so that the next transaction that is started by the
Session can be committed.

isMarkedRollbackOnly method

Returns if Session is currently marked as "rollback only". Boolean true is returned
by this method if and only if markRollbackOnly method was previously called on
this Session and the transaction started by the Session is still active.

setTransactionTimeout method

Set transaction timeout for next transaction started by this Session to a specified
number of seconds. This method does not affect the transaction timeout of any
transactions previously started by this Session. It only affects transactions that are
started after this method is called. If this method is never called, then the timeout
value that was passed to the setTxTimeout method of the
com.ibm.websphere.objectgrid.ObjectGrid method is used.

getTransactionTimeout method

This method returns the transaction timeout value in seconds. The last value that
was passed as the timeout value to the setTransactionTimeout method is returned
by this method. If the setTransactionTimeout method is never called, then the
timeout value that was passed to the setTxTimeout method of the
com.ibm.websphere.objectgrid.ObjectGrid method is used.

transactionTimedOut

This method returns boolean true if the current transaction that was started by this
Session has timed out.

isFlushing method

This method returns boolean true if and only if all transaction changes are being
flushed out to the Loader plug-in as a result of the flush method of Session
interface being invoked. A Loader plug-in may find this method useful when it
needs to know why its batchUpdate method was invoked.

isCommitting method

This method returns boolean true if and only if all transaction changes are being
committed as a result of the commit method of Session interface being invoked. A
Loader plug-in might find this method useful when it needs to know why its
batchUpdate method was invoked.

28 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

setRequestRetryTimeout method

This method sets the request retry timeout value for the session in milliseconds. If
the client set a request retry timeout, the session setting overrides the client value.

getRequestRetryTimeout method

This method gets the current request retry timeout setting on the session. A value
of -1 indicates that the timeout is not set. A value of 0 indicates it is in fail-fast
mode. A value greater than 0 indicates the timeout setting in milliseconds.

Handling locks
Locks have life cycles and different types of locks are compatible with others in
various ways. Locks must be handled in the correct order to avoid deadlock
scenarios.

Lock life cycle

Lock time outs

Each BackingMap has a default lock wait timeout value of 15 seconds. The timeout
value is used to ensure that an application does not wait endlessly for a lock mode
to be granted because of a deadlock condition that occurs due to an application
error. Your application can use the BackingMap interface to override the default
lock wait timeout value. The following example illustrates how to set the lock wait
timeout value for the map1 backing map to 60 seconds:
import com.ibm.websphere.objectgrid.BackingMap;
import com.ibm.websphere.objectgrid.LockStrategy;
import com.ibm.websphere.objectgrid.ObjectGrid;
import com.ibm.websphere.objectgrid.ObjectGridManagerFactory;
...
ObjectGrid og =
ObjectGridManagerFactory.getObjectGridManager().createObjectGrid("test");
BackingMap bm = og.defineMap("map1");
bm.setLockStrategy(LockStrategy.PESSIMISTIC);
bm.setLockTimeout(60);

See Constant field values for more information about the default values of the
backing map configuration.

To avoid a java.lang.IllegalStateException exception, call both the setLockStrategy
method and the setLockTimeout method before calling either the initialize or
getSession methods on the ObjectGrid instance. The setLockTimeout method
parameter is a Java primitive integer that specifies the number of seconds that
eXtreme Scale waits for a lock mode to be granted. If a transaction waits longer
than the lock wait timeout value configured for the BackingMap, a
com.ibm.websphere.objectgrid.LockTimeoutException exception results.

When a LockTimeoutException occurs, the application must determine if the
timeout is occurring because the application is running slower than expected, or if
the timeout occurred because of a deadlock condition. If an actual deadlock
condition occurred, then increasing the lock wait timeout value does not eliminate
the exception. Increasing the timeout results in the exception taking longer to
occur. However, if increasing the lock wait timeout value does eliminate the

Chapter 3. Accessing data in WebSphere eXtreme Scale 29

exception, then the problem occurred because the application was running slower
than expected. The application in this case must determine why performance is
slow.

Lock wait timeout for ObjectMaps

The lock wait timeout can be overridden for a single ObjectMap instance by using
the ObjectMap.setLockTimeout method. The lock timeout value affects all
transactions started after the new timeout value is set. This method can be useful
when lock collisions are possible or expected in select transactions.

Shared, upgradeable, and exclusive locks

When an application calls any method of the ObjectMap interface, uses the find
methods on an index, or does a query, eXtreme Scale automatically attempts to
acquire a lock for the map entry that is being accessed. WebSphere eXtreme Scale
uses the following lock modes based on the method the application calls in the
ObjectMap interface.
v The get and getAll methods on the ObjectMap interface, index methods, and

queries acquire an S lock, or a shared lock mode for the key of a map entry. The
duration that the S lock is held depends on the transaction isolation level used.
An S lock mode allows concurrency between transactions that attempt to acquire
an S or an upgradeable lock (U lock) mode for the same key, but blocks other
transactions that attempt to get an exclusive lock (X lock) mode for the same
key.

v The getForUpdate and getAllForUpdate methods acquire a U lock, or an
upgradeable lock mode for the key of a map entry. The U lock is held until the
transaction completes. A U lock mode allows concurrency between transactions
that acquire an S lock mode for the same key, but blocks other transactions that
attempt to acquire a U lock or X lock mode for the same key.

v The put, putAll, remove, removeAll, insert, update, and touch acquire an X lock,
or exclusive lock mode for the key of a map entry. The X lock is held until the
transaction completes. An X lock mode ensures that only one transaction is
inserting, updating, or removing a map entry of a given key value. An X lock
blocks all other transactions that attempt to acquire a S, U, or X lock mode for
the same key.

v The global invalidate and global invalidateAll methods acquire an X lock for
each map entry that is invalidated. The X lock is held until the transaction
completes. No locks are acquired for the local invalidate and local invalidateAll
methods because none of the BackingMap entries are invalidated by local
invalidate method calls.

From the preceding definitions, it is obvious that an S lock mode is weaker than a
U lock mode because it allows more transactions to run concurrently when
accessing the same map entry. The U lock mode is slightly stronger than the S lock
mode because it blocks other transactions that are requesting either a U or X lock
mode. The S lock mode only blocks other transactions that are requesting an X lock
mode. This small difference is important in preventing some deadlocks from
occurring. The X lock mode is the strongest lock mode because it blocks all other
transactions attempting to get an S, U, or X lock mode for the same map entry. The
net effect of an X lock mode is to ensure that only one transaction can insert,
update, or remove a map entry and to prevent updates from being lost when more
than one transaction is attempting to update the same map entry.

30 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

The following table is a lock mode compatibility matrix that summarizes the
described lock modes, which you can use to determine which lock modes are
compatible with each other. To read this matrix, the row in the matrix indicates a
lock mode that is already granted. The column indicates the lock mode that is
requested by another transaction. If Yes is displayed in the column, then the lock
mode requested by the other transaction is granted because it is compatible with
the lock mode that is already granted. No indicates that the lock mode is not
compatible and the other transaction must wait for the first transaction to release
the lock that it owns.

Table 1. Lock mode compatibility matrix

Lock Lock type S (shared) Lock type U (upgradeable) Lock type X (exclusive) Strength

S (shared) Yes Yes No weakest

U (upgradeable) Yes No No normal

X (exclusive) No No No strongest

Locking deadlocks

Consider the following sequence of lock mode requests:
1. X lock is granted to transaction 1 for key1.
2. X lock is granted to transaction 2 for key2.
3. X lock requested by transaction 1 for key2. (Transaction 1 blocks waiting for

lock owned by transaction 2.)
4. X lock requested by transaction 2 for key1. (Transaction 2 blocks waiting for

lock owned by transaction 1.)

The preceding sequence is the classic deadlock example of two transactions that
attempt to acquire more than a single lock, and each transaction acquires the locks
in a different order. To prevent this deadlock, each transaction must obtain the
multiple locks in the same order. If the OPTIMISTIC lock strategy is used and the
flush method on the ObjectMap interface is never used by the application, then
lock modes are requested by the transaction only during the commit cycle. During
the commit cycle, eXtreme Scale determines the keys for the map entries that need
to be locked and requests the lock modes in key sequence (deterministic behavior).
With this method, eXtreme Scale prevents the large majority of the classic
deadlocks. However, eXtreme Scale does not and cannot prevent all possible
deadlock scenarios. A few scenarios exist that the application needs to consider.
Following are the scenarios that the application must be aware of and take
preventative action against.

One scenario exists where eXtreme Scale is able to detect a deadlock without
having to wait for a lock wait timeout to occur. If this scenario does occur, a
com.ibm.websphere.objectgrid.LockDeadlockException exception results. Consider
the following code snippet:
Session sess = ...;
ObjectMap person = sess.getMap("PERSON");
sess.begin();
Person p = (IPerson)person.get("Lynn");
// Lynn had a birthday, so we make her 1 year older.
p.setAge(p.getAge() + 1);
person.put("Lynn", p);
sess.commit();

In this situation, Lynn's boyfriend wants to make her older than she is now, and
both Lynn and her boyfriend run this transaction concurrently. In this situation,

Chapter 3. Accessing data in WebSphere eXtreme Scale 31

both transactions own an S lock mode on the Lynn entry of the PERSON map as a
result of the person.get("Lynn") method invocation. As a result of the person.put
("Lynn", p) method call, both transactions attempt to upgrade the S lock mode to
an X lock mode. Both transactions block waiting for the other transaction to release
the S lock mode it owns. As a result, a deadlock occurs because a circular wait
condition exists between the two transactions. A circular wait condition results
when more than one transaction attempts to promote a lock from a weaker to a
stronger mode for the same map entry. In this scenario, a LockDeadlockException
exception results instead of a LockTimeoutException exception.

The application can prevent the LockDeadlockException exception for the
preceding example by using the optimistic lock strategy instead of the pessimistic
lock strategy. Using the optimistic lock strategy is the preferred solution when the
map is mostly read and updates to the map are infrequent. If the pessimistic lock
strategy must be used, the getForUpdate method can be used instead of the get
method in the above example or a transaction isolation level of
TRANSACTION_READ_COMMITTED can be used.

For more information, see the topic on locking strategies in the Product Overview.

Using the TRANSACTION_READ_COMMITTED transaction isolation level
prevents the S lock that is acquired by the get method from being held until the
transaction completes. If the key is never invalidated in the transactional cache,
repeatable reads are still guaranteed.

See the topic on map entry locking in the Administration Guide for more
information.

An alternative to changing the transaction isolation level is to use the
getForUpdate method. The first transaction to call the getForUpdate method
acquires a U lock mode instead of an S lock. This lock mode causes the second
transaction to block when it calls the getForUpdate method because only one
transaction is granted a U lock mode. Because the second transaction is blocked, it
does not own any lock mode on the Lynn map entry. The first transaction does not
block when it attempts to upgrade the U lock mode to an X lock mode as a result
of the put method call from the first transaction. This feature demonstrates why U
lock mode is called the upgradeable lock mode. When the first transaction is
completed, the second transaction unblocks and is granted the U lock mode. An
application can prevent the lock promotion deadlock scenario by using the
getForUpdate method instead of the get method when pessimistic lock strategy is
being used.

Important: This solution does not prevent read-only transactions from being able
to read a map entry. Read-only transactions call the get method, but never call the
put, insert, update, or remove methods. Concurrency is just as high as when the
regular get method is used. The only reduction in concurrency occurs when the
getForUpdate method is called by more than one transaction for the same map
entry.

You must be aware when a transaction calls the getForUpdate method on more
than one map entry to ensure that the U locks are acquired in the same order by
each transaction. For example, suppose that the first transaction calls the
getForUpdate method for the key 1 and the getForUpdate method for key 2.
Another concurrent transaction calls the getForUpdate method for the same keys,
but in reverse order. This sequence causes the classic deadlock because multiple
locks are obtained in different orders by different transactions. The application still

32 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

needs to ensure that every transaction accesses multiple map entries in key
sequence to ensure that deadlock does not occur. Because the U lock is obtained at
the time that the getForUpdate method is called rather than at commit time, the
eXtreme Scale cannot order the lock requests like it does during the commit cycle.
The application must control the lock ordering in this case.

Using the flush method on the ObjectMap interface before a commit can introduce
additional lock ordering considerations. The flush method is typically used to force
changes made to the map out to the backend through the Loader plug-in. In this
situation, the backend uses its own lock manager to control concurrency, so the
lock wait condition and deadlock can occur in backend rather than in the eXtreme
Scale lock manager. Consider the following transaction:
Session sess = ...;
ObjectMap person = sess.getMap("PERSON");
boolean activeTran = false;
try
{

sess.begin();
activeTran = true;
Person p = (IPerson)person.get("Lynn");
p.setAge(p.getAge() + 1);
person.put("Lynn", p);
person.flush();
...
p = (IPerson)person.get("Tom");
p.setAge(p.getAge() + 1);
sess.commit();
activeTran = false;

}
finally
{

if (activeTran) sess.rollback();
}

Suppose that another transaction also updated the Tom person, called the flush
method, and then updated the Lynn person. If this situation occurred, the
following interleaving of the two transactions results in a database deadlock
condition:
X lock is granted to transaction 1 for "Lynn" when flush is executed.
X lock is granted to transaction 2 for "Tom" when flush is executed..
X lock requested by transaction 1 for "Tom" during commit processing.
(Transaction 1 blocks waiting for lock owned by transaction 2.)
X lock requested by transaction 2 for "Lynn" during commit processing.
(Transaction 2 blocks waiting for lock owned by transaction 1.)

This example demonstrates that the use of the flush method can cause a deadlock
to occur in the database rather than in eXtreme Scale. This deadlock example can
occur regardless of what lock strategy is used. The application must take care to
prevent this kind of deadlock from occurring when using the flush method and
when a Loader is plugged into the BackingMap. The preceding example also
illustrates another reason why eXtreme Scale has a lock wait timeout mechanism.
A transaction that is waiting for a database lock might be waiting while it owns an
eXtreme Scale map entry lock. Consequently, problems at database level can cause
excessive wait times for an eXtreme Scale lock mode and result in a
LockTimeoutException exception.

Common deadlock scenarios

The following sections describe some of the most common deadlock scenarios and
suggestions on how to avoid them.

Chapter 3. Accessing data in WebSphere eXtreme Scale 33

Scenario: Single key deadlocks

The following scenarios describe how deadlocks can occur when a single key is
accessed using a S lock and later updated. When this happens from two
transactions simultaneously, it results in a deadlock.

Table 2. Single key deadlocks scenario

Thread 1 Thread 2

1 session.begin() session.begin() Each thread establishes an
independent transaction.

2 map.get(key1) map.get(key1) S lock granted to both
transactions for key1.

3 map.update(Key1,v) No U lock. Update performed
in transactional cache.

4 map.update(key1,v) No U lock. Update performed
in the transactional cache

5 session.commit() Blocked: The S lock for key1
cannot be upgraded to an X
lock because Thread 2 has an S
lock.

6 session.commit() Deadlock: The S lock for key1
cannot be upgraded to an X
lock because T1 has an S lock.

Table 3. Single key deadlocks, continued

Thread 1 Thread 2

1 session.begin() session.begin() Each thread establishes an
independent transaction.

2 map.get(key1) S lock granted for key1

3 map.getForUpdate(key1,v) S lock is upgraded to a U lock
for key1.

4 map.get(key1) S lock granted for key1.

5 map.getForUpdate(key1,v) Blocked: T1 already has U lock.

6 session.commit() Deadlock: The U lock for key1
cannot be upgraded.

7 session.commit() Deadlock: The S lock for key1
cannot be upgraded.

Table 4. Single key deadlocks, continued

Thread 1 Thread 2

1 session.begin() session.begin() Each thread establish an
independent transaction

2 map.get(key1) S lock granted for key1.

3 map.getForUpdate(key1,v) S lock is upgraded to a U lock
for key1

4 map.get(key1) S lock is granted for key1.

5 map.getForUpdate(key1,v) Blocked: Thread 1 already has
a U lock.

6 session.commit() Deadlock: The U lock for key1
cannot be upgraded to an X
lock because Thread 2 has an S
lock.

34 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

If the ObjectMap.getForUpdate is used to avoid the S lock, then the deadlock is
avoided:

Table 5. Single key deadlocks, continued

Thread 1 Thread 2

1 session.begin() session.begin() Each thread establishes an
independent transaction.

2 map.getForUpdate(key1) U lock granted to thread 1 for
key1.

3 map.getForUpdate(key1) U lock request is blocked.

4 map.update(key1,v) <blocked>

5 session.commit() <blocked> The U lock for key1 can be
successfully upgraded to an X
lock.

6 <released> The U lock is finally granted to
key1 for thread 2.

7 map.update(key2,v) U lock granted to thread 2 for
key2.

8 session.commit() The U lock for key1 can
successfully be upgraded to an
X lock.

Solutions

1. Use the getForUpdate method instead of get to acquire a U lock instead of an S
lock.

2. Use a transaction isolation level of read committed to avoid holding S locks.
Reducing the transaction isolation level increases the possibility of
non-repeatable reads. However, non-repeatable reads are only possible if the
transaction cache is explicitly invalidated.

3. Use the optimistic lock strategy. Using the optimistic lock strategy requires
handling optimistic collision exceptions.

Scenario: Ordered multiple key deadlock

This scenario describes what happens if two transactions attempt to update the
same entry directly and hold S locks to other entries.

Table 6. Ordered multiple key deadlock scenario

Thread 1 Thread 2

1 session.begin() session.begin() Each thread establishes an
independent transaction.

2 map.get(key1) map.get(key1) S lock granted to both
transactions for key1.

3 map.get(key2) map.get(key2) S lock granted to both
transactions for key2.

4 map.update(key1,v) No U lock. Update performed
in transactional cache.

5 map.update(key2,v) No U lock. Update performed
in transactional cache.

6. session.commit() Blocked: The S lock for key 1
cannot be upgraded to an X
lock because thread 2 has an S
lock.

Chapter 3. Accessing data in WebSphere eXtreme Scale 35

Table 6. Ordered multiple key deadlock scenario (continued)

Thread 1 Thread 2

7 session.commit() Deadlock: The S lock for key 2
cannot be upgraded because
thread 1 has an S lock.

You can use the ObjectMap.getForUpdate method to avoid the S lock, then you can
avoid the deadlock:

Table 7. Ordered multiple key deadlock scenario, continued

Thread 1 Thread 2

1 session.begin() session.begin() Each thread establishes an
independent transaction.

2 map.getForUpdate(key1) U lock granted to transaction
T1 for key1.

3 map.getForUpdate(key1) U lock request is blocked.

4 map.get(key2) <blocked> S lock granted for T1 for key2.

5 map.update(key1,v) <blocked>

6 session.commit() <blocked> The U lock for key1 can be
successfully upgraded to an X
lock.

7 <released> The U lock is finally granted to
key1 for T2

8 map.get(key2) S lock granted to T2 for key2.

9 map.update(key2,v) U lock granted to T2 for key2.

10 session.commit() The U lock for key1 can be
successfully upgraded to an X
lock.

Solutions

1. Use getForUpdate instead of the get method to acquire a U lock directly for the
first key. This strategy works only if the method order is deterministic.

2. Use a transaction isolation level of read committed to avoid holding S locks.
This solution is the easiest to implement if the method order is not
deterministic. Reducing the transaction isolation level increases the possibility
of non-repeatable reads. However, non-repeatable reads are only possible if the
transaction cache is explicitly invalidated.

3. Use the optimistic lock strategy. Using the optimistic lock strategy requires
handling optimistic collision exceptions.

Scenario: Out of order with U lock

If the order in which keys are requested cannot be guaranteed, then a deadlock can
still occur:

Table 8. Out of order with U lock scenario

Thread 1 Thread 2

1 session.begin() session.begin() Each thread establishes an
independent transaction.

2 map.getforUpdate(key1) map.getForUpdate(key2) U locks successfully granted
for key1 and key2.

3 map.get(key2) map.get(key1) S lock granted for key1 and
key2.

4 map.update(key1,v) map.update(key2,v)

36 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

Table 8. Out of order with U lock scenario (continued)

Thread 1 Thread 2

5 session.commit() The U lock cannot be
upgraded to an X lock because
T2 has an S lock.

6 session.commit() The U lock cannot be
upgraded to an X lock because
T1 has an S lock.

Solutions
1. Wrap all work with a single global U lock (mutex). This method reduces

concurrency, but handles all scenarios when access and order is
non-deterministic.

2. Use a transaction isolation level of read committed to avoid holding S locks.
Reducing the transaction isolation level increases the possibility of
non-repeatable reads. However, non-repeatable reads from one client are only
possible if the transaction cache is explicitly invalidated by the same client.

3. Use the optimistic lock strategy. Using the optimistic lock strategy requires
handling optimistic collision exceptions.

Exception handling in locking scenarios

The preceding examples do not have any exception handling. To prevent locks
from being held for excessive amounts of time when a LockTimeoutException
exception or a LockDeadlockException exception occurs, an application must
ensure that it catches unexpected exceptions and calls the rollback method when
something unexpected occurs. Change the preceding code snippet as demonstrated
in the following example:
Session sess = ...;
ObjectMap person = sess.getMap("PERSON");
boolean activeTran = false;
try
{

sess.begin();
activeTran = true;
Person p = (IPerson)person.get("Lynn");
// Lynn had a birthday, so we make her 1 year older.
p.setAge(p.getAge() + 1);
person.put("Lynn", p);
sess.commit();
activeTran = false;

}
finally
{

if (activeTran) sess.rollback();
}

The finally block in the snippet of code ensures that a transaction is rolled back
when an unexpected exception occurs. It not only handles a
LockDeadlockException exception, but any other unexpected exception that might
occur. The finally block handles the case where an exception occurs during a
commit method invocation. This example is not the only way to deal with
unexpected exceptions, and there might be cases where an application wants to
catch some of the unexpected exceptions that can occur and display one of its
application exceptions. You can add catch blocks as appropriate, but the
application must ensure that the snippet of code does not exit without completing
the transaction.

Chapter 3. Accessing data in WebSphere eXtreme Scale 37

Transaction isolation
For transactions, you can configure each backing map configuration with one of
three lock strategies: pessimistic, optimistic or none. When you are using
pessimistic and optimistic locking, eXtreme Scale uses shared (S), upgradeable (U)
and exclusive (X) locks to maintain consistency. This locking behavior is most
notable when using pessimistic locking, because optimistic locks are not held. You
can use one of three transaction isolation levels to tune the locking semantics that
eXtreme Scale uses to maintain consistency in each cache map: repeatable read,
read committed and read uncommitted.

Transaction isolation overview

Transaction isolation defines how the changes that are made by one operation
become visible to other concurrent operations.

WebSphere eXtreme Scale supports three transaction isolation levels with which
you can further tune the locking semantics that eXtreme Scale uses to maintain
consistency in each cache map: repeatable read, read committed and read
uncommitted. The transaction isolation level is set on the Session interface using
the setTransactionIsolation method. The transaction isolation can be changed any
time during the life of the session, if a transaction is not currently in progress.

The product enforces the various transaction isolation semantics by adjusting the
way in which shared (S) locks are requested and held. Transaction isolation has no
effect on maps configured to use the optimistic or none locking strategies or when
upgradeable (U) locks are acquired.

Repeatable read with pessimistic locking

The repeatable read transaction isolation level is the default. This isolation level
prevents dirty reads and non-repeatable reads, but does not prevent phantom
reads. A dirty read is a read operation that occurs on data that has been modified
by a transaction but has not been committed. A non-repeatable read might occur
when read locks are not acquired when performing a read operation. A phantom
read can occur when two identical read operations are performed, but two
different sets of results are returned because an update has occurred on the data
between the read operations. The product achieve a repeatable read by holding
onto any S locks until the transaction that owns the lock completes. Because an X
lock is not granted until all S locks are released, all transactions holding the S lock
are guaranteed to see the same value when re-read.
map = session.getMap("Order");
session.setTransactionIsolation(Session.TRANSACTION_REPEATABLE_READ);
session.begin();

// An S lock is requested and held and the value is copied into
// the transactional cache.
Order order = (Order) map.get("100");
// The entry is evicted from the transactional cache.
map.invalidate("100", false);

// The same value is requested again. It already holds the
// lock, so the same value is retrieved and copied into the
// transactional cache.
Order order2 (Order) = map.get("100");

// All locks are released after the transaction is synchronized
// with cache map.
session.commit();

38 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

Phantom reads are possible when you are using queries or indexes because locks
are not acquired for ranges of data, only for the cache entries that match the index
or query criteria. For example:
session1.setTransactionIsolation(Session.TRANSACTION_REPEATABLE_READ);
session1.begin();

// A query is run which selects a range of values.
ObjectQuery query = session1.createObjectQuery

("SELECT o FROM Order o WHERE o.itemName=’Widget’");

// In this case, only one order matches the query filter.
// The order has a key of "100".
// The query engine automatically acquires an S lock for Order "100".
Iterator result = query.getResultIterator();

// A second transaction inserts an order that also matches the query.
Map orderMap = session2.getMap("Order");
orderMap.insert("101", new Order("101", "Widget"));

// When the query runs again in the current transaction, the
// new order is visible and will return both Orders "100" and "101".
result = query.getResultIterator();

// All locks are released after the transaction is synchronized
// with cache map.
session.commit();

Read committed with pessimistic locking

The read committed transaction isolation level can be used with eXtreme Scale,
which prevents dirty reads, but does not prevent non-repeatable reads or phantom
reads, so eXtreme Scale continues to use S locks to read data from the cache map,
but immediately releases the locks.
map1 = session1.getMap("Order");
session1.setTransactionIsolation(Session.TRANSACTION_READ_COMMITTED);
session1.begin();

// An S lock is requested but immediately released and
//the value is copied into the transactional cache.

Order order = (Order) map1.get("100");

// The entry is evicted from the transactional cache.
map1.invalidate("100", false);

// A second transaction updates the same order.
// It acquires a U lock, updates the value, and commits.
// The ObjectGrid successfully acquires the X lock during
// commit since the first transaction is using read
// committed isolation.

Map orderMap2 = session2.getMap("Order");
session2.begin();
order2 = (Order) orderMap2.getForUpdate("100");
order2.quantity=2;
orderMap2.update("100", order2);
session2.commit();

// The same value is requested again. This time, they
// want to update the value, but it now reflects
// the new value
Order order1Copy (Order) = map1.getForUpdate("100");

Chapter 3. Accessing data in WebSphere eXtreme Scale 39

Read uncommitted with pessimistic locking

The read uncommitted transaction isolation level can be used with eXtreme Scale,
which is a level that allows dirty reads, non-repeatable reads and phantom reads.

SessionHandle for routing
When using a per-container partition placement policy, you can use a
SessionHandle. A SessionHandle instance contains partition information for the
current Session and can be reused for a new Session.

A SessionHandle includes information for the partition to which the current
Session is bound. SessionHandle is extremely useful for the per-container partition
placement policy and can be serialized with standard Java serialization.

If you have a SessionHandle instance, you can apply that handle to a Session with
the setSessionHandle(SessionHandle target) method, passing the handle in as the
target. You can retrieve the SessionHandle with the Session.getSessionHandle
method.

Because it is only applicable in a per-container placement scenario, getting the
SessionHandle throws an IllegalStateException if a given ObjectGrid has multiple
per-container mapsets or has none. If you do not invoke the setSessionHandle
method before calling the getSessionHandle method, the appropriate
SessionHandle will be selected based on your ClientProperties configuration.

You can also use the helper class SessionHandleTransformer to convert the handle
into different formats. The methods of this class can change a handle's
representation from byte array to instance, string to instance, and vice versa for
both cases, and can also write the handle's contents into the output stream.

For an example on how you can use a SessionHandle, see the zone-preferred
routing topic in the Product Overview.

Optimistic collision exception
You can receive an OptimisticCollisionException directly, or receive it with an
ObjectGridException.

The following code is an example of how to catch the exception and then display
its message:
try {
...
} catch (ObjectGridException oe) {

System.out.println(oe);
}

Exception cause

OptimisticCollisionException is created in a situation in which two different clients
try to update the same map entry at relatively the same time. For example, if one
client attempts to commit a session and update the map entry after another client
reads the data before the commit, that data is then incorrect. The exception is
created when the other client attempts to commit the incorrect data.

40 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

Retrieving the key that triggered the exception

It might be useful, when troubleshooting such an exception, to retrieve the key
corresponding to the entry that triggered the exception. The benefit of the
OptimisticCollisionException is it contains the getKey method, which returns the
object representing that key. The following example demonstrates how to retrieve
and print the key when catching OptimisticCollisionException:
try {
...
} catch (OptimisticCollisionException oce) {

System.out.println(oce.getKey());
}

ObjectGridException causes an OptimisticCollisionException

OptimisticCollisionException might be the cause of ObjectGridException
displaying. If this is the case, you can use the following code to determine the
exception type and print out the key. The following code uses the findRootCause
utility method as described in the section below.
try {
...
}
catch (ObjectGridException oe) {

Throwable Root = findRootCause(oe);
if (Root instanceof OptimisticCollisionException) {

OptimisticCollisionException oce = (OptimisticCollisionException)Root;
System.out.println(oce.getKey());

}
}

General exception handling technique

Knowing the root cause of a Throwable object is helpful in isolating the source of
an error. The following example demonstrates how an exception handler uses a
utility method to find the root cause of the Throwable object.

Example:
static public Throwable findRootCause(Throwable t)
{

// Start with Throwable that occurred as the root.
Throwable root = t;

// Follow cause chain until last Throwable in chain is found.
Throwable cause = root.getCause();
while (cause != null)
{

root = cause;
cause = root.getCause();

}

// Return last Throwable in the chain as the root cause.
return root;

}

Chapter 3. Accessing data in WebSphere eXtreme Scale 41

ObjectMap API
ObjectMaps are like Java Maps that allow data to be stored as key-value pairs.
ObjectMaps provide a simple and intuitive approach for the application to store
data. An ObjectMap is ideal for caching objects that have no relationships
involved. If object relationships are involved, then you should use the
EntityManager API.

For more information about the EntityManager API, see “Caching objects and their
relationships (EntityManager API)” on page 51.

Applications typically obtain a WebSphere eXtreme Scale reference and then obtain
a Session object from the reference for each thread. Sessions cannot be shared
between threads. The getMap method of Session returns a reference to an
ObjectMap to use for this thread.

Introduction to ObjectMap
The ObjectMap interface is used for transactional interaction between applications
and BackingMaps.

Purpose

An ObjectMap instance is obtained from a Session object that corresponds to the
current thread. The ObjectMap interface is the main vehicle that applications use to
make changes to entries in a BackingMap.

Obtain an ObjectMap instance

An application gets an ObjectMap instance from a Session object using the
Session.getMap(String) method. The following code snippet demonstrates how to
obtain an ObjectMap instance:
ObjectGrid objectGrid = ...;
BackingMap backingMap = objectGrid.defineMap("mapA");
Session sess = objectGrid.getSession();
ObjectMap objectMap = sess.getMap("mapA");

Each ObjectMap instance corresponds to a particular Session object. Calling the
getMap method multiple times on a particular Session object with the same
BackingMap name always returns the same ObjectMap instance.

Automatically commit transactions

Operations against BackingMaps that use ObjectMaps and JavaMaps are performed
most efficiently within a Session transaction. WebSphere eXtreme Scale provides
autocommit support when methods on the ObjectMap and JavaMap interfaces are
called outside of a Session transaction. The methods start an implicit transaction,
perform the requested operation, and commit the implicit transaction.

Method semantics

An explanation of the semantics behind each method on the ObjectMap and
JavaMap interfaces follows. The setDefaultKeyword method, the
invalidateUsingKeyword method, and the methods that have a Serializable
argument are discussed in the Keywords topic. The setTimeToLive method is
discussed in the Evictors topic. See the API documentation for more information
on these methods.

42 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

containsKey method
The containsKey method determines if a key has a value in the
BackingMap or Loader. If null values are supported by an application, this
method can be used to determine if a null reference that is returned from a
get operation refers to a null value or indicates that the BackingMap and
Loader do not contain the key.

flush method
The flush method semantics are similar to the flush method on the Session
interface. The notable difference is that the Session flush applies the current
pending changes for all of the maps that are modified in the current
session. With this method, only the changes in this ObjectMap instance are
flushed to the loader.

get method
The get method fetches the entry from the BackingMap instance. If the
entry is not found in the BackingMap instance but a Loader is associated
with the BackingMap instance, the BackingMap instance attempts to fetch
the entry from the Loader. The getAll method is provided to allow batch
fetch processing.

getForUpdate method
The getForUpdate method is the same as the get method, but using the
getForUpdate method tells the BackingMap and Loader that the intention
is to update the entry. A Loader can use this hint to issue a SELECT for
UPDATE query to a database backend. If a pessimistic locking strategy is
defined for the BackingMap, the lock manager locks the entry. The
getAllForUpdate method is provided to allow batch fetch processing.

insert method
The insert method inserts an entry into the BackingMap and the Loader.
Using this method tells the BackingMap and Loader that you want to
insert an entry that did not previously exist. When you invoke this method
on an existing entry, an exception occurs when the method is invoked or
when the current transaction is committed.

invalidate method
The semantics of the invalidate method depend on the value of the
isGlobal parameter that is passed to the method. The invalidateAll
method is provided to allow batch invalidate processing.

Local invalidation is specified when the value false is passed as the
isGlobal parameter of the invalidate method. Local invalidation discards
any changes to the entry in the transaction cache. If the application issues a
get method, the entry is fetched from the last committed value in the
BackingMap. If no entry is present in the BackingMap, the entry is fetched
from the last flushed or committed value in the Loader. When a transaction
is committed, any entries that are marked as locally invalidated have no
impact on the BackingMap. Any changes that were flushed to the Loader
are still committed even if the entry was invalidated.

Global invalidation is specified when true is passed as the isGlobal
parameter of the invalidate method. Global invalidation discards any
pending changes to the entry in the transaction cache and bypasses the
BackingMap value on subsequent operations that are performed on the
entry. When a transaction is committed, any entries that are marked as
globally invalidated are evicted from the BackingMap. Consider the
following use case for invalidation as an example: The BackingMap is
backed by a database table that has an auto increment column. Increment

Chapter 3. Accessing data in WebSphere eXtreme Scale 43

columns are useful for assigning unique numbers to records. The
application inserts an entry. After the insert, the application needs to know
the sequence number for the inserted row. It knows that its copy of the
object is old, so it uses global invalidation to get the value from the Loader.
The following code demonstrates this use case:
Session sess = objectGrid.getSession();
ObjectMap map = sess.getMap("mymap");
sess.begin();
map.insert("Billy", new Person("Joe", "Bloggs", "Manhattan"));
sess.flush();
map.invalidate("Billy", true);
Person p = map.get("Billy");
System.out.println("Version column is: " + p.getVersion());
map.commit();

This code sample adds an entry for Billy. The version attribute of Person
is set using an auto-increment column in the database. The application first
performs an insert command. It then issues a flush, which causes the insert
to be sent to the Loader and database. The database sets the version
column to the next number in the sequence, which makes the Person object
in the transaction outdated. To update the object, the application is globally
invalidated. The next get method that is issued gets the entry from the
Loader, ignoring the transaction value. The entry is fetched from the
database with the updated version value.

put method
The semantics of the put method are dependent on whether a previous get
method was invoked in the transaction for the key. If the application issues
a get operation that returns an entry that exists in the BackingMap or
Loader, the put method invocation is interpreted as an update and returns
the previous value in the transaction. If a put method invocation ran
without a previous get method invocation, or a previous get method
invocation did not find an entry, the operation is interpreted as an insert.
The semantics of the insert and update methods apply when the put
operation is committed. The putAll method is provided to enable batch
insert and update processing.

remove method
The remove method removes the entry from the BackingMap and the
Loader, if a Loader is plugged in. The value of the object that was removed
is returned by this method. If the object does not exist, this method returns
a null value. The removeAll method is provided to enable batch deletion
processing without the return values.

setCopyMode method
The setCopyMode method specifies a CopyMode value for this ObjectMap.
With this method, an application can override the CopyMode value that is
specified on the BackingMap. The specified CopyMode value is in effect
until clearCopyMode method is invoked. Both methods are invoked
outside of transactional bounds. A CopyMode value cannot be changed in
the middle of a transaction.

touch method
The touch method updates the last access time for an entry. This method
does not retrieve the value from the BackingMap. Use this method in its
own transaction. If the provided key does not exist in the BackingMap
because of invalidation or removal, an exception occurs during commit
processing.

44 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

update method
The update method explicitly updates an entry in the BackingMap and the
Loader. Using this method indicates to the BackingMap and Loader that
you want to update an existing entry. An exception occurs if you invoke
this method on an entry that does not exist when the method is invoked or
during commit processing.

getIndex method
The getIndex method attempts to obtain a named index that is built on the
BackingMap. The index cannot be shared between threads and works on
the same rules as a Session. The returned index object should be cast to the
right application index interface such as the MapIndex interface, the
MapRangeIndex interface, or a custom index interface.

clear method
The clear method removes all cache entries from a map from all partitions.
This operation is an auto-commit function, so no active transaction should
be present when calling clear.

Note: The clear method only clears out the map on which it is called,
leaving any related entity maps unaffected. This method does not invoke
the Loader plug-in.

Dynamic maps
With the dynamic maps feature you can create maps after the grid has already
been initialized.

In previous versions, eXtreme Scale has required you to define maps before
initializing the ObjectGrid. As a result, you had to create all of the maps to be used
before running transactions against any of the maps.

Advantages of dynamic maps

The introduction of dynamic maps reduces the restriction of having to define all
maps prior to initialization. Through the use of template maps, maps can now be
created after the ObjectGrid has been initialized.

Template maps are defined in the ObjectGrid XML file. Template comparisons are
run when a Session requests a map that has not been previously defined. If the
new map name matches the regular expression of a template map, the map is
created dynamically and assigned the name of the requested map. This newly
created map inherits all of the settings of the template map as defined by the
ObjectGrid XML file.

Creating dynamic maps

Dynamic map creation is tied to the Session.getMap(String) method. Calls to this
method return an ObjectMap based on the BackingMap that was configured by the
ObjectGrid XML file.

Passing in a String that matches the regular expression of a template map will
result in the creation of an ObjectMap and an associated BackingMap.

See the API documentation for more information about the Session.getMap(String
cacheName) method.

Chapter 3. Accessing data in WebSphere eXtreme Scale 45

Defining a template map in XML is as simple as setting a template boolean
attribute on the backingMap element. When template is set to true, the name of the
backingMap is interpreted as a regular expression.

WebSphere eXtreme Scale uses Java regular expression pattern matching. For more
information about the regular expression engine in Java, see the API
documentation for the java.util.regex package and classes.

A sample ObjectGrid XML file with a template map defined follows.
<?xml version="1.0" encoding="UTF-8"?>
<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">
<objectGrids>
<objectGrid name="accounting">
<backingMap name="payroll" readOnly="false" />
<backingMap name="templateMap.*" template="true"
pluginCollectionRef="templatePlugins" lockStrategy="PESSIMISTIC" />

</objectGrid>
</objectGrids>

<backingMapPluginCollections>
<backingMapPluginCollection id="templatePlugins">
<bean id="Evictor"
className="com.ibm.websphere.objectgrid.plugins.builtins.LFUEvictor" />

</backingMapPluginCollection>
</backingMapPluginCollections>
</objectGridConfig>

The previous XML file defines one template map and one non-template map. The
name of the template map is a regular expression: templateMap.*. When the
Session.getMap(String) method is called with a map name matching this regular
expression, the application creates a new map.

Note: If you have defined more than one template map, assure that the name of
any argument for the Session.getMap(String) method does not match more than
one template map.

Example

Configuration of a template map is required in order to create a dynamic map.
Add the template boolean to a backingMap in the ObjectGrid XML file.

<backingMap name="templateMap.*" template="true" />

The name of the template map is treated as a regular expression.

Calling the Session.getMap(String cacheName) method with a cacheName that is a
match for the regular expression results in the creation of the dynamic map. An
ObjectMap object is returned from this method call, and an associated BackingMap
object is created.

Session session = og.getSession();
ObjectMap map = session.getMap(“templateMap1”);

The newly created map is configured with all the attributes and plug-ins that were
defined on the template map definition. Consider again the previous ObjectGrid
XML file.

46 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

A dynamic map created based on the template map in this XML file would have
an evictor configured and its lock strategy would be pessimistic.

Note: A template is not an actual BackingMap. That is, the “accounting”
ObjectGrid does not contain an actual “templateMap.*” map. The template is only
used as a basis for dynamic map creation. However, you must include the dynamic
map in the mapRef element of the deployment policy XML file named exactly as in
the ObjectGrid XML. This identifies which mapSet the dynamic maps will be in.

Consider the change in behavior of the Session.getMap(String cacheName) method
when using template maps. Before WebSphere eXtreme Scale Version 7.0, all calls
to the Session.getMap(String cacheName) method resulted in an
UndefinedMapException exception if the map requested did not exist. With
dynamic maps, every name that matches the regular expression for a template map
results in map creation. Be sure to note the number of maps that your application
creates, particularly if your regular expression is generic.

Also, ObjectGridPermission.DYNAMIC_MAP is required for dynamic map creation
when eXtreme Scale security is enabled. This permission is checked when the
Session.getMap(String) method is called. For more information, see the information
about application client authorization in the Product Overview.

Limitations and considerations:

Limitations:
v You cannot use dynamic maps with Query.
v The QuerySchema does not support the template for mapName.
v You cannot use entities with dynamic maps.
v An entity BackingMap is implicitly defined, mapped to the entity through the

class name.

Considerations:
v Many plug-ins have no way of determining the map with which each plug-in is

associated.
v Other plug-ins differentiate themselves by using a map name or BackingMap

name as an argument.

ObjectMap and JavaMap
A JavaMap instance is obtained from an ObjectMap object. The JavaMap interface
has the same method signatures as ObjectMap, but with different exception
handling. JavaMap extends the java.util.Map interface, so all exceptions are
instances of the java.lang.RuntimeException class. Because JavaMap extends the
java.util.Map interface, it is easy to quickly use WebSphere eXtreme Scale with an
existing application that uses a java.util.Map interface for object caching.

Obtain a JavaMap instance

An application gets a JavaMap instance from an ObjectMap object using the
ObjectMap.getJavaMap method. The following code snippet demonstrates how to
obtain a JavaMap instance.

Chapter 3. Accessing data in WebSphere eXtreme Scale 47

ObjectGrid objectGrid = ...;
BackingMap backingMap = objectGrid.defineMap("mapA");
Session sess = objectGrid.getSession();
ObjectMap objectMap = sess.getMap("mapA");
java.util.Map map = objectMap.getJavaMap();
JavaMap javaMap = (JavaMap) javaMap;

A JavaMap is backed by the ObjectMap from which it was obtained. Calling the
getJavaMap method multiple times using a particular ObjectMap always returns
the same JavaMap instance.

Methods

The JavaMap interface only supports a subset of the methods on the java.util.Map
interface. The java.util.Map interface supports the following methods:

containsKey(java.lang.Object) method

get(java.lang.Object) method

put(java.lang.Object, java.lang.Object) method

putAll(java.util.Map) method

remove(java.lang.Object) method

clear()

All other methods inherited from the java.util.Map interface result in a
java.lang.UnsupportedOperationException exception.

Maps as FIFO queues
With WebSphere eXtreme Scale, you can provide a first-in first-out (FIFO)
queue-like capability for all maps. WebSphere eXtreme Scale tracks the insertion
order for all maps. A client can ask a map for the next unlocked entry in a map in
the order of insertion and lock the entry. This process allows multiple clients to
consume entries from the map efficiently.

FIFO example

The following code snippet shows a client entering a loop to process entries from
the map until the map is exhausted. The loop starts a transaction, then calls the
ObjectMap.getNextKey(5000) method. This method returns the key of the next
available unlocked entry and locks it. If the transaction is blocked for more than
5000 milliseconds, then the method returns null.
Session session = ...;
ObjectMap map = session.getMap("xxx");
// this needs to be set somewhere to stop this loop
boolean timeToStop = false;

while(!timeToStop)
{

session.begin();
Object msgKey = map.getNextKey(5000);
if(msgKey == null)
{

// current partition is exhausted, call it again in
// a new transaction to move to next partition
session.rollback();
continue;

}
Message m = (Message)map.get(msgKey);

48 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

// now consume the message
...
// need to remove it
map.remove(msgKey);
session.commit();

}

Local mode versus client mode

If the application is using a local core, that is, it is not a client, then the mechanism
works as described previously.

For client mode, if the Java virtual machine (JVM) is a client, then the client
initially connects to a random partition primary. If no work exists in that partition,
then the client moves to the next partition to look for work. The client either finds
a partition with entries or loops around to the initial random partition. If the client
loops around to the initial partition, then it returns a null value to the application.
If the client finds a partition with a map that has entries, then it consumes entries
from there until no entries are available for the timeout period. After the timeout
passes, then null is returned. This action means that when null is returned and a
partitioned map is used, then it you should start a new transaction and resume
listening. The previous code sample fragment has this behavior.

Example

When you are running as a client and a key is returned, that transaction is now
bound to the partition with the entry for that key. If you do not want to update
any other maps during that transaction, then a problem does not exist. If you do
want to update, then you can only update maps from the same partition as the
map from which you got the key. The entry that is returned from the getNextKey
method needs to give the application a way to discover relevant data in that
partition. As an example, if you have two maps; one for events and another for
jobs that the events impact. You define the two maps with the following entities:
Job.java
package tutorial.fifo;

import com.ibm.websphere.projector.annotations.Entity;
import com.ibm.websphere.projector.annotations.Id;

@Entity
public class Job
{
@Id String jobId;

int jobState;
}

JobEvent.java
package tutorial.fifo;

import com.ibm.websphere.projector.annotations.Entity;
import com.ibm.websphere.projector.annotations.Id;
import com.ibm.websphere.projector.annotations.OneToOne;

@Entity
public class JobEvent
{
@Id String eventId;
@OneToOne Job job;
}

Chapter 3. Accessing data in WebSphere eXtreme Scale 49

The job has as ID and state, which is an integer. Suppose you want to increment
the state whenever an event arrived. The events are stored in the JobEvent Map.
Each entry has a reference to the job the event concerns. The code for the listener
to do this looks like the following example:
JobEventListener.java
package tutorial.fifo;

import com.ibm.websphere.objectgrid.ObjectGridException;
import com.ibm.websphere.objectgrid.ObjectMap;
import com.ibm.websphere.objectgrid.Session;
import com.ibm.websphere.objectgrid.em.EntityManager;

public class JobEventListener
{
boolean stopListening;

public synchronized void stopListening()
{
stopListening = true;
}

synchronized boolean isStopped()
{
return stopListening;
}

public void processJobEvents(Session session)
throws ObjectGridException
{
EntityManager em = session.getEntityManager();
ObjectMap jobEvents = session.getMap("JobEvent");
while(!isStopped())
{
em.getTransaction().begin();

Object jobEventKey = jobEvents.getNextKey(5000);
if(jobEventKey == null)
{
em.getTransaction().rollback();
continue;
}
JobEvent event = (JobEvent)em.find(JobEvent.class, jobEventKey);
// process the event, here we just increment the
// job state
event.job.jobState++;
em.getTransaction().commit();
}
}
}

The listener is started on a thread by the application. The listener runs until the
stopListening method is called. The processJobEvents method is run on the thread
until the stopListening method is called. The loop blocks waiting for an eventKey
from the JobEvent Map and then uses the EntityManager to access the event object,
dereference to the job and increment the state.

The EntityManager API does not have a getNextKey method, but the ObjectMap
does. So, the code uses the ObjectMap for JobEvent to get the key. If a map is used
with entities then it does not store objects anymore. Instead, it stores Tuples; a
Tuple object for the key and a Tuple object for the value. The EntityManager.find
method accepts a Tuple for the key.

The code to create an event looks like the following example:

50 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

em.getTransaction().begin();
Job job = em.find(Job.class, "Job Key");
JobEvent event = new JobEvent();
event.id = Random.toString();
event.job = job;
em.persist(event); // insert it
em.getTransaction().commit();

You find the job for the event, construct an event, point it to the job, insert it in the
JobEvent Map and commit the transaction.

Loaders and FIFO maps

If you want to back a map that is used as a FIFO queue with a Loader, then you
might need to do some additional work. If the order of the entries in the map is
not a concern, you have no extra work. If the order is important, then you need to
add a sequence number to all of the inserted records when you are persisting the
records to the backend. The preload mechanism should be written to insert the
records on startup using this order.

Caching objects and their relationships (EntityManager API)
Most cache products use map-based APIs to store data as key-value pairs. The
ObjectMap API and the dynamic cache in WebSphere Application Server, among
others, use this approach. However, map-based APIs have limitations. The
EntityManager API simplifies the interaction with the data grid by providing an
easy way to declare and interact with a complex graph of related objects.

Map-based API limitations

If you are using a map-based API, such as the dynamic cache in WebSphere
Application Server or the ObjectMap API, take the following limitations into
consideration:
v Indexes and queries must use reflection to query fields and properties in cache

objects.
v Custom data serialization is required to achieve performance for complex

objects.
v It is difficult to work with graphs of objects. The application must store artificial

references between objects and manually join the objects together.

Benefits of the EntityManager API

The EntityManager API uses the existing map-based infrastructure, but it converts
entity objects to and from tuples before storing or reading them from the map. An
entity object is transformed into a key tuple and a value tuple, which are then
stored as key-value pairs. A tuple is an array of primitive attributes.

This set of APIs follows the Plain Old Java Object (POJO) style of programming
that is adopted by most frameworks.

Chapter 3. Accessing data in WebSphere eXtreme Scale 51

Related reference

API documentation: EntityManager interface
“EntityTransaction interface” on page 82
You can use the EntityTransaction interface to demarcate transactions.

Defining an entity schema
An ObjectGrid can have any number of logical entity schemas. Entities are defined
using annotated Java classes, XML, or a combination of both XML and Java classes.
Defined entities are then registered with an eXtreme Scale server and bound to
BackingMaps, indexes and other plug-ins.

When designing an entity schema, you must complete the following tasks:
1. Define the entities and their relationships.
2. Configure eXtreme Scale.
3. Register the entities.
4. Create entity-based applications that interact with the eXtreme Scale

EntityManager APIs.

Entity schema configuration

An entity schema is a set of entities and the relationships between the entities. In
an eXtreme Scale application with multiple partitions, the following restrictions
and options apply to entity schemas:
v Each entity schema must have a single root defined. This is known as the

schema root.
v All the entities for a given schema must be in the same map set, which means

that all the entities that are reachable from a schema root with key or non-key
relationships must be defined in the same map set as the schema root.

v Each entity can belong to only one entity schema.
v Each eXtreme Scale application can have multiple schemas.

Entities are registered with an ObjectGrid instance before it is initialized. Each
defined entity must be uniquely named and is automatically bound to an
ObjectGrid BackingMap of the same name. The initialization method varies
depending on the configuration you are using:

Local eXtreme Scale configuration

If you are using a local ObjectGrid, you can programmatically configure the entity
schema. In this mode, you can use the ObjectGrid.registerEntities methods to
register annotated entity classes or an entity metadata descriptor file.

Distributed eXtreme Scale configuration

If you are using a distributed eXtreme Scale configuration, you must provide an
entity metadata descriptor file with the entity schema.

For more details, see “EntityManager in a distributed environment” on page 62.

Entity requirements

Entity metadata is configured using Java class files, an entity descriptor XML file
or both. At minimum, the entity descriptor XML is required to identify which

52 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

eXtreme Scale BackingMaps are to be associated with entities. The persistent
attributes of the entity and its relationships to other entities are described in either
an annotated Java class (entity metadata class) or the entity descriptor XML file.
The entity metadata class, when specified, is also used by the EntityManager API
to interact with the data in the grid.

An eXtreme Scale grid can be defined without providing any entity
classes. This can be beneficial when the server and client are interacting directly
with the tuple data stored in the underlying maps. Such entities are defined
completely in the entity descriptor XML file and are referred to as classless entities.

Classless entities

Classless entities are useful when it is not possible to include application classes in
the server or client classpath. Such entities are defined in the entity metadata
descriptor XML file, where the class name of the entity is specified using a
classless entity identifier in the form: @<entity identifier>. The @ symbol identifies
the entity as classless and is used for mapping associations between entities. See
the "Classless entity metadata" figure an example of an entity metadata descriptor
XML file with two classless entities defined.

If an eXtreme Scale server or client does not have access to the classes, either can
still use the EntityManager API using classless entities. Common use cases include
the following:
v The eXtreme Scale container is hosted in a server that does not allow application

classes in the classpath. In this case, the clients can still access the grid using the
EntityManager API from a client, where the classes are allowed.

v The eXtreme Scale client does not require access to the entity classes because the
client is either using a non-Java client, such as the eXtreme Scale REST data
service or the client is accessing the tuple data in the grid using the ObjectMap
API.

If the entity metadata is compatible between the client and server, entity metadata
can be created using entity metadata classes, an XML file, or both.

For example, the "Programmatic entity class" in the following figure is compatible
with the classless metadata code in the next section.
Programmatic entity class
@Entity
public class Employee {

@Id long serialNumber;
@Basic byte[] picture;
@Version int ver;
@ManyToOne(fetch=FetchType.EAGER, cascade=CascadeType.PERSIST)
Department department;

}

@Entity
public static class Department {

@Id int number;
@Basic String name;
@OneToMany(fetch=FetchType.LAZY, cascade=CascadeType.ALL, mappedBy="department")
Collection<Employee> employees;

}

Chapter 3. Accessing data in WebSphere eXtreme Scale 53

Classless fields, keys, and versions

As previously mentioned, classless entities are configured completely in the entity
XML descriptor file. Class-based entities define their attributes using Java fields,
properties and annotations. So classless entities need to define key and attribute
structure in the entity XML descriptor with the <basic> and <id> tags.
Classless entity metadata
<?xml version="1.0" encoding="UTF-8"?>
<entity-mappings xmlns="http://ibm.com/ws/projector/config/emd"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/projector/config/emd ./emd.xsd">

<entity class-name="@Employee" name="Employee">
<attributes>

<id name="serialNumber" type="long"/>
<basic name="firstName" type="java.lang.String"/>
<basic name="picture" type="[B"/>
<version name="ver" type="int"/>
<many-to-one

name="department"
target-entity="@Department"
fetch="EAGER"">

<cascade><cascade-persist/></cascade>
</many-to-one>

</attributes>
</entity>

<entity class-name="@Department" name="Department" >
<attributes>

<id name="number" type="int"/>
<basic name="name" type="java.lang.String"/>
<version name="ver" type="int"/>
<one-to-many

name="employees"
target-entity="@Employee"
fetch="LAZY"
mapped-by="department">
<cascade><cascade-all/></cascade>

</one-to-many>
</attributes>

</entity>

Note that each entity above has an <id> element. A classless entity must have
either one or more of an <id> element defined, or a single-valued association that
represents the key for the entity. The fields of the entity are represented by <basic>
elements. The <id>, <version>, and <basic> elements require a name and type in
classless entities. See the following supported attribute types section for details on
supported types.

Entity class requirements

Class-based entities are identified by associating various metadata with a Java
class. The metadata can be specified usingJava Platform, Standard Edition 5
annotations, an entity metadata descriptor file, or a combination of annotations and
the descriptor file. Entity classes must meet the following criteria:
v The @Entity annotation is specified in the entity XML descriptor file.
v The class has a public or protected no-argument constructor.
v It must be a top-level class. Interfaces and enumerated types are not valid entity

classes.
v Cannot use the final keyword.

54 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

v Cannot use inheritance.
v Must have a unique name and type for each ObjectGrid instance.

Entities all have a unique name and type. The name, if using annotations, is the
simple (short) name of the class by default, but can be overridden using the name
attribute of the @Entity annotation.

Persistent attributes

The persistent state of an entity is accessed by clients and the entity manager by
using either fields (instance variables) or Enterprise JavaBeans-style property
accessors. Each entity must define either field- or property-based access. Annotated
entities are field-access if the class fields are annotated and are property-access if
the getter method of the property is annotated. A mixture of field- and
property-access is not allowed. If the type cannot be automatically determined, the
accessType attribute on the @Entity annotation or equivalent XML can be used to
identify the access type.

Persistent fields
Field-access entity instance variables are accessed directly from the entity
manager and clients. Fields that are marked with the transient modifier or
transient annotation are ignored. Persistent fields must not have final or
static modifiers.

Persistent properties
Property-access entities must adhere to the JavaBeans signature
conventions for read and write properties. Methods that do not follow
JavaBeans conventions or have the Transient annotation on the getter
method are ignored. For a property of type T, there must be a getter
method getProperty which returns a value of type T and a void setter
method setProperty(T). For boolean types, the getter method can be
expressed as isProperty, returning true or false. Persistent properties cannot
have the static modifier.

Supported attribute types
The following persistent field and property types are supported:
v Java primitive types including wrappers
v java.lang.String
v java.math.BigInteger
v java.math.BigDecimal
v java.util.Date
v java.util.Calendar
v java.sql.Date
v java.sql.Time
v java.sql.Timestamp
v byte[]
v java.lang.Byte[]
v char[]
v java.lang.Character[]
v enum

Chapter 3. Accessing data in WebSphere eXtreme Scale 55

User serializable attribute types are supported but have performance,
query and change-detection limitations. Persistent data that cannot be
proxied, such as arrays and user serializable objects, must be reassigned to
the entity if altered.

Serializable attributes are represented in the entity descriptor XML file using the
class name of the object. If the object is an array, the data type is represented using
the Java internal form. For example, if an attribute data type is java.lang.Byte[][],
the string representation is [[Ljava.lang.Byte;

User serializable types should adhere to the following best practices:
v Implement high performance serialization methods. Implement the

java.lang.Cloneable interface and public clone method.
v Implement the java.io.Externalizable interface.
v Implement equals and hashCode

Entity associations

Bi-directional and uni-directional entity associations, or relationships between
entities can be defined as one-to-one, many-to-one, one-to-many and
many-to-many. The entity manager automatically resolves the entity relationships
to the appropriate key references when storing the entities.

The eXtreme Scale grid is a data cache and does not enforce referential integrity
like a database. Although relationships allow cascading persist and remove
operations for child entities, it does not detect or enforce broken links to objects.
When removing a child object, the reference to that object must be removed from
the parent.

If you define a bi-directional association between two entities, you must identify
the owner of the relationship. In a to-many association, the many side of the
relationship is always the owning side. If ownership cannot be determined
automatically, then the mappedBy attribute of the annotation, or XML equivalent,
must be specified. The mappedBy attribute identifies the field in the target entity
that is the owner of the relationship. This attribute also helps identify the related
fields when there are multiple attributes of the same type and cardinality.

Single-valued associations

One-to-one and many-to-one associations are denoted using the @OneToOne and
@ManyToOne annotations or equivalent XML attributes. The target entity type is
determined by the attribute type. The following example defines a uni-directional
association between Person and Address. The Customer entity has a reference to
one Address entity. In this case, the association could also be many-to-one since
there is no inverse relationship.
@Entity
public class Customer {

@Id id;
@OneToOne Address homeAddress;

}

@Entity
public class Address{

@Id id
@Basic String city;

}

56 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

To specify a bi-directional relationship between the Customer and Address classes,
add a reference to the Customer class from the Address class and add the
appropriate annotation to mark the inverse side of the relationship. Because this
association is one-to-one, you have to specify an owner of the relationship using
the mappedBy attribute on the @OneToOne annotation.
@Entity
public class Address{

@Id id
@Basic String city;
@OneToOne(mappedBy="homeAddress") Customer customer;

}

Collection-valued associations

One-to-many and many-to-many associations are denoted using the @OneToMany
and @ManyToMany annotations or equivalent XML attributes. All many relationships
are represented using the types: java.util.Collection, java.util.List or java.util.Set.
The target entity type is determined by the generic type of the Collection, List or
Set or explicitly using the targetEntity attribute on the @OneToMany or @ManyToMany
annotation (or XML equivalent).

In the previous example, it is not practical to have one address object per customer
because many customers might share an address or might have multiple addresses.
This situation is better solved using a many association:
@Entity
public class Customer {

@Id id;
@ManyToOne Address homeAddress;
@ManyToOne Address workAddress;

}

@Entity
public class Address{

@Id id
@Basic String city;
@OneToMany(mappedBy="homeAddress") Collection<Customer> homeCustomers;

@OneToMany(mappedBy="workAddress", targetEntity=Customer.class)
Collection workCustomers;

}

In this example, two different relationships exist between the same entities: a
Home and Work address relationship. A non-generic Collection is used for the
workCustomers attribute to demonstrate how to use the targetEntity attribute
when generics are not available.

Classless associations

Classless entity associations are defined in the entity metadata descriptor XML file
similar to how class-based associations are defined. The only difference is that
instead of the target entity pointing to an actual class, it points to the classless
entity identifier used for the class name of the entity.

An example follows:

Chapter 3. Accessing data in WebSphere eXtreme Scale 57

<many-to-one name="department" target-entity="@Department" fetch="EAGER">
<cascade><cascade-all/></cascade>

</many-to-one>
<one-to-many name="employees" target-entity="@Employee" fetch="LAZY">

<cascade><cascade-all/></cascade>
</one-to-many>

Primary keys

All entities must have a primary key, which can be a simple (single attribute) or
composite (multiple attribute) key. The key attributes are denoted using the Id
annotation or defined in the entity XML descriptor file. Key attributes have the
following requirements:
v The value of a primary key cannot change.
v A primary key attribute should be one of the following types: Java primitive

type and wrappers, java.lang.String, java.util.Date or java.sql.Date.
v A primary key can contain any number of single-valued associations. The target

entity of the primary key association must not have an inverse association
directly or indirectly to the source entity.

Composite primary keys can optionally define a primary key class. An entity is
associated with a primary key class using the @IdClass annotation or the entity
XML descriptor file. An @IdClass annotation is useful in conjunction with the
EntityManager.find method.

Primary key classes have the following requirements:
v It should be public with a no-argument constructor.
v The access type of the primary key class is determined by the entity that

declares the primary key class.
v If property-access, the properties of the primary key class must be public or

protected.
v The primary key fields or properties must match the key attribute names and

types defined in the referencing entity.
v Primary key classes must implement the equals and hashCode methods.

An example follows:
@Entity
@IdClass(CustomerKey.class)
public class Customer {

@Id @ManyToOne Zone zone;
@Id int custId;
String name;
...

}

@Entity
public class Zone{

@Id String zoneCode;
String name;

}

public class CustomerKey {
Zone zone;
int custId;

public int hashCode() {...}
public boolean equals(Object o) {...}

}

58 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

Classless primary keys

Classless entities are required to either have at least one <id> element or an
association in the XML file with the attribute id=true. An example of both would
look like the following:
<id name="serialNumber" type="int"/>
<many-to-one name="department" target-entity="@Department" id="true">
<cascade><cascade-all/></cascade>
</many-to-one>

Remember:
The <id-class> XML tag is not supported for classless entities.

Entity proxies and field interception

Entity classes and mutable supported attribute types are extended by proxy classes
for property-access entities and bytecode-enhanced for Java Development Kit (JDK)
5 field-access entities. All access to the entity, even by internal business methods
and the equals methods, must use the appropriate field or property access
methods.

Proxies and field interceptors are used to allow the entity manager to track the
state of the entity, determine if the entity has changed, and improve performance.
Field interceptors are only available on Java SE 5 platforms when the entity
instrumentation agent is configured.

Attention: When using property-access entities, the equals method should use the
instanceof operator for comparing the current instance to the input object. All
introspection of the target object should be through the properties of the object, not
the fields themselves, because the object instance will be the proxy.

emd.xsd file
Use the entity metadata XML schema definition to create a descriptor XML file and
define an entity schema for WebSphere eXtreme Scale.

See the the information about the entity metadata descriptor file in the
Administration Guide for the descriptions of each element and attribute of the
emd.xsd file.

emd.xsd file
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:emd="http://ibm.com/ws/projector/config/emd"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://ibm.com/ws/projector/config/emd"
elementFormDefault="qualified" attributeFormDefault="unqualified"
version="1.0">

<!-- ** -->
<xsd:element name="entity-mappings">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="description" type="xsd:string" minOccurs="0" />
<xsd:element name="entity" type="emd:entity" minOccurs="1" maxOccurs="unbounded" />

</xsd:sequence>
</xsd:complexType>
<xsd:unique name="uniqueEntityClassName">

<xsd:selector xpath="emd:entity" />
<xsd:field xpath="@class-name" />

</xsd:unique>
</xsd:element>

<!-- ** -->
<xsd:complexType name="entity">

<xsd:sequence>
<xsd:element name="description" type="xsd:string" minOccurs="0" />
<xsd:element name="id-class" type="emd:id-class" minOccurs="0" />

Chapter 3. Accessing data in WebSphere eXtreme Scale 59

<xsd:element name="attributes" type="emd:attributes" minOccurs="0" />
<xsd:element name="entity-listeners" type="emd:entity-listeners" minOccurs="0" />
<xsd:element name="pre-persist" type="emd:pre-persist" minOccurs="0" />
<xsd:element name="post-persist" type="emd:post-persist" minOccurs="0" />
<xsd:element name="pre-remove" type="emd:pre-remove" minOccurs="0" />
<xsd:element name="post-remove" type="emd:post-remove" minOccurs="0" />
<xsd:element name="pre-invalidate" type="emd:pre-invalidate" minOccurs="0" />
<xsd:element name="post-invalidate" type="emd:post-invalidate" minOccurs="0" />
<xsd:element name="pre-update" type="emd:pre-update" minOccurs="0" />
<xsd:element name="post-update" type="emd:post-update" minOccurs="0" />
<xsd:element name="post-load" type="emd:post-load" minOccurs="0" />

</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required" />
<xsd:attribute name="class-name" type="xsd:string" use="required" />
<xsd:attribute name="access" type="emd:access-type" />
<xsd:attribute name="schemaRoot" type="xsd:boolean" />

</xsd:complexType>

<!-- ** -->
<xsd:complexType name="attributes">

<xsd:sequence>
<xsd:choice>

<xsd:element name="id" type="emd:id" minOccurs="0" maxOccurs="unbounded" />
</xsd:choice>
<xsd:element name="basic" type="emd:basic" minOccurs="0" maxOccurs="unbounded" />
<xsd:element name="version" type="emd:version" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="many-to-one" type="emd:many-to-one" minOccurs="0" maxOccurs="unbounded" />
<xsd:element name="one-to-many" type="emd:one-to-many" minOccurs="0" maxOccurs="unbounded" />
<xsd:element name="one-to-one" type="emd:one-to-one" minOccurs="0" maxOccurs="unbounded" />
<xsd:element name="many-to-many" type="emd:many-to-many" minOccurs="0" maxOccurs="unbounded" />
<xsd:element name="transient" type="emd:transient" minOccurs="0" maxOccurs="unbounded" />

</xsd:sequence>
</xsd:complexType>

<!-- ** -->
<xsd:simpleType name="access-type">

<xsd:restriction base="xsd:token">
<xsd:enumeration value="PROPERTY" />
<xsd:enumeration value="FIELD" />

</xsd:restriction>
</xsd:simpleType>

<!-- ** -->
<xsd:complexType name="id-class">

<xsd:attribute name="class-name" type="xsd:string" use="required" />
</xsd:complexType>

<!-- ** -->
<xsd:complexType name="id">

<xsd:attribute name="name" type="xsd:string" use="required" />
<xsd:attribute name="type" type="xsd:string" />
<xsd:attribute name="alias" type="xsd:string" use="optional" />

</xsd:complexType>

<!-- ** -->
<xsd:complexType name="transient">

<xsd:attribute name="name" type="xsd:string" use="required" />
</xsd:complexType>

<!-- ** -->
<xsd:complexType name="basic">

<xsd:attribute name="name" type="xsd:string" use="required" />
<xsd:attribute name="alias" type="xsd:string" />
<xsd:attribute name="type" type="xsd:string" />
<xsd:attribute name="fetch" type="emd:fetch-type" />

</xsd:complexType>

<!-- ** -->
<xsd:simpleType name="fetch-type">

<xsd:restriction base="xsd:token">
<xsd:enumeration value="LAZY" />
<xsd:enumeration value="EAGER" />

</xsd:restriction>
</xsd:simpleType>

<!-- ** -->
<xsd:complexType name="many-to-one">

<xsd:sequence>
<xsd:element name="cascade" type="emd:cascade-type" minOccurs="0" />

</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required" />
<xsd:attribute name="alias" type="xsd:string" />
<xsd:attribute name="target-entity" type="xsd:string" />
<xsd:attribute name="fetch" type="emd:fetch-type" />
<xsd:attribute name="id" type="xsd:boolean" />

</xsd:complexType>
<!-- ** -->
<xsd:complexType name="one-to-one">

<xsd:sequence>
<xsd:element name="cascade" type="emd:cascade-type" minOccurs="0" />

</xsd:sequence>

60 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

<xsd:attribute name="name" type="xsd:string" use="required" />
<xsd:attribute name="alias" type="xsd:string" />
<xsd:attribute name="target-entity" type="xsd:string" />
<xsd:attribute name="fetch" type="emd:fetch-type" />
<xsd:attribute name="mapped-by" type="xsd:string" />
<xsd:attribute name="id" type="xsd:boolean" />

</xsd:complexType>
<!-- ** -->
<xsd:complexType name="one-to-many">

<xsd:sequence>
<xsd:element name="order-by" type="emd:order-by" minOccurs="0" />
<xsd:element name="cascade" type="emd:cascade-type" minOccurs="0" />

</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required" />
<xsd:attribute name="alias" type="xsd:string" />
<xsd:attribute name="target-entity" type="xsd:string" />
<xsd:attribute name="fetch" type="emd:fetch-type" />
<xsd:attribute name="mapped-by" type="xsd:string" />

</xsd:complexType>

<!-- ** -->
<xsd:complexType name="many-to-many">

<xsd:sequence>
<xsd:element name="order-by" type="emd:order-by" minOccurs="0" />
<xsd:element name="cascade" type="emd:cascade-type" minOccurs="0" />

</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required" />
<xsd:attribute name="alias" type="xsd:string" />
<xsd:attribute name="target-entity" type="xsd:string" />
<xsd:attribute name="fetch" type="emd:fetch-type" />
<xsd:attribute name="mapped-by" type="xsd:string" />

</xsd:complexType>

<!-- ** -->
<xsd:simpleType name="order-by">

<xsd:restriction base="xsd:string" />
</xsd:simpleType>

<!-- ** -->
<xsd:complexType name="cascade-type">

<xsd:sequence>
<xsd:element name="cascade-all" type="emd:emptyType" minOccurs="0" />
<xsd:element name="cascade-persist" type="emd:emptyType" minOccurs="0" />
<xsd:element name="cascade-remove" type="emd:emptyType" minOccurs="0" />
<xsd:element name="cascade-invalidate" type="emd:emptyType" minOccurs="0" />
<xsd:element name="cascade-merge" type="emd:emptyType" minOccurs="0" />
<xsd:element name="cascade-refresh" type="emd:emptyType" minOccurs="0" />

</xsd:sequence>
</xsd:complexType>

<!-- ** -->
<xsd:complexType name="emptyType" />

<!-- ** -->
<xsd:complexType name="version">

<xsd:attribute name="name" type="xsd:string" use="required"/>
<xsd:attribute name="alias" type="xsd:string" />
<xsd:attribute name="type" type="xsd:string" />

</xsd:complexType>

<!-- ** -->

<xsd:complexType name="entity-listeners">
<xsd:sequence>

<xsd:element name="entity-listener" type="emd:entity-listener" minOccurs="0" maxOccurs="unbounded" />
</xsd:sequence>

</xsd:complexType>

<!-- ** -->
<xsd:complexType name="entity-listener">

<xsd:sequence>
<xsd:element name="pre-persist" type="emd:pre-persist" minOccurs="0" />
<xsd:element name="post-persist" type="emd:post-persist" minOccurs="0" />
<xsd:element name="pre-remove" type="emd:pre-remove" minOccurs="0" />
<xsd:element name="post-remove" type="emd:post-remove" minOccurs="0" />
<xsd:element name="pre-invalidate" type="emd:pre-invalidate" minOccurs="0" />
<xsd:element name="post-invalidate" type="emd:post-invalidate" minOccurs="0" />
<xsd:element name="pre-update" type="emd:pre-update" minOccurs="0" />
<xsd:element name="post-update" type="emd:post-update" minOccurs="0" />
<xsd:element name="post-load" type="emd:post-load" minOccurs="0" />

</xsd:sequence>
<xsd:attribute name="class-name" type="xsd:string" use="required" />

</xsd:complexType>

<!-- ** -->
<xsd:complexType name="pre-persist">

<xsd:attribute name="method-name" type="xsd:string" use="required" />
</xsd:complexType>

<!-- ** -->
<xsd:complexType name="post-persist">

Chapter 3. Accessing data in WebSphere eXtreme Scale 61

<xsd:attribute name="method-name" type="xsd:string" use="required" />
</xsd:complexType>

<!-- ** -->
<xsd:complexType name="pre-remove">

<xsd:attribute name="method-name" type="xsd:string" use="required" />
</xsd:complexType>

<!-- ** -->
<xsd:complexType name="post-remove">

<xsd:attribute name="method-name" type="xsd:string" use="required" />
</xsd:complexType>

<!-- ** -->
<xsd:complexType name="pre-invalidate">

<xsd:attribute name="method-name" type="xsd:string" use="required" />
</xsd:complexType>

<!-- ** -->
<xsd:complexType name="post-invalidate">

<xsd:attribute name="method-name" type="xsd:string" use="required" />
</xsd:complexType>

<!-- ** -->
<xsd:complexType name="pre-update">

<xsd:attribute name="method-name" type="xsd:string" use="required" />
</xsd:complexType>

<!-- ** -->
<xsd:complexType name="post-update">

<xsd:attribute name="method-name" type="xsd:string" use="required" />
</xsd:complexType>

<!-- ** -->
<xsd:complexType name="post-load">

<xsd:attribute name="method-name" type="xsd:string" use="required" />
</xsd:complexType>

</xsd:schema>

EntityManager in a distributed environment
You can use EntityManager with a local ObjectGrid or in a distributed eXtreme
Scale environment. The main difference is how you connect to this remote
environment. After you establish a connection, there is no difference between using
a Session object or using the EntityManager API.

Required configuration files

The following XML configuration files are required:
v ObjectGrid descriptor XML file
v Entity descriptor XML file
v Deployment or data grid descriptor XML file

These files specify which entities and BackingMaps a server will host.

The entity metadata descriptor file contains a description of the entities that are
used. At minimum, you must specify the entity class and name. If you are running
in a Java Platform, Standard Edition 5 environment, eXtreme Scale automatically
reads the entity class and its annotations. You can define additional XML attributes
if the entity class has no annotations or if you are required to override the class
attributes. If you are registering the entities classless , provide all of entity
information in the XML file only.

You can use the following XML configuration snippet to define an eXtreme Scale
data grid with entities. In this snippet, the server creates an ObjectGrid with the
name bookstore and an associated backing map with the name order. Note that
the objectgrid.xml snippet refers to the entity.xml file. In this case, the entity.xml
file contains one entity, the Order entity.

62 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

objectgrid.xml
<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">

<objectGrids>
<objectGrid name="bookstore" entityMetadataXMLFile="entity.xml">
<backingMap name="Order"/>
</objectGrid>

</objectGrids>

</objectGridConfig>

This objectgrid.xml file refers to the entity.xml with the entityMetadataXMLFile
attribute. The location of this file is relative to the location of the objectgrid.xml
file. An example of the entity.xml file follows:
entity.xml
<entity-mappings xmlns="http://ibm.com/ws/projector/config/emd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/projector/config/emd ./emd.xsd">
<entity class-name="com.ibm.websphere.tutorials.objectgrid.em.

distributed.step1.Order" name="Order"/>
</entity-mappings>

This example assumes the Order class would have the orderNumber and desc
fields annotated similarly.

An equivalent classless entity.xml would be as follows
classless entity.xml
<entity-mappings xmlns="http://ibm.com/ws/projector/config/emd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/projector/config/emd ./emd.xsd">
<entity class-name="@Order " name="Order">

<description>"Entity named: Order"</description>
<attributes>

<id name="orderNumber" type="int"/>
<basic name="desc" type="java.lang.String"/>

</attributes>
</entity>
</entity-mappings>

For information about starting an eXtreme Scale server, see Starting WebSphere
eXtreme Scale server processes in the Administration Guide, which uses both the
deployment.xml and objectgrid.xml files to start the catalog server.

Connecting to a distributed eXtreme Scale server

The following code enables the connect mechanism for a client and server on the
same computer:
String catalogEndpoints="localhost:2809";
URL clientOverrideURL= new URL("file:etc/emtutorial/distributed/step1/objectgrid.xml");
ClientClusterContext clusterCtx = ogMgr.connect(catalogEndpoints, null, clientOverrideURL);
ObjectGrid objectGrid=ogMgr.getObjectGrid(clusterCtx, "bookstore");

In the preceding code snippet, note the reference to the remote eXtreme Scale
server. After you establish a connection , you can invoke EntityManager API
methods such as persist, update, remove and find.

Attention: When you are using entities, pass the client override ObjectGrid
descriptor XML file to the connect method. If a null value is passed to the
clientOverrideURL property and the client has a different directory structure than
the server, then the client might fail to locate the ObjectGrid or entity descriptor
XML files. At minimum, the ObjectGrid and entity XML files for the server can be
copied to the client.

Chapter 3. Accessing data in WebSphere eXtreme Scale 63

Previously, using entities on an ObjectGrid client required you to make the
ObjectGrid XML and entity XML available to the client in one of the following two
ways:
1. Pass an overriding ObjectGrid XML to the ObjectGridManager.connect(String

catalogServerAddresses, ClientSecurityConfiguration securityProps, URL
overRideObjectGridXml) method.
String catalogEndpoints="myHost:2809";
URL clientOverrideURL= new URL("file:etc/emtutorial/distributed/step1/objectgrid.xml");
ClientClusterContext clusterCtx = ogMgr.connect(catalogEndpoints, null, clientOverrideURL);
ObjectGrid objectGrid=ogMgr.getObjectGrid(clusterCtx, "bookstore");

2. Pass null for the override file and ensure that the ObjectGrid XML and
referenced entity XML are available to the client on the same path as on the
server.
String catalogEndpoints="myHost:2809";
ClientClusterContext clusterCtx = ogMgr.connect(catalogEndpoints, null, null);
ObjectGrid objectGrid=ogMgr.getObjectGrid(clusterCtx, "bookstore");

The XML files were required regardless of whether or not you
wanted to use subset entities on the client side. These files are no longer required
to use the entities as defined by the server. Instead, pass null as the
overRideObjectGridXml parameter as in option 2 of the previous section. If the
XML file is not found on the same path set on the server, the client will use the
entity configuration on the server.

However, if you use subset entities on the client, you must provide an overriding
ObjectGrid XML as in option 1.

Client and server side schema

The server-side schema defines the type of data stored in the maps on a server.
The client-side schema is a mapping to application objects from the schema on the
server. For example, you might have the following server-side schema:
@Entity
class ServerPerson
{

@Id String ssn;
String firstName;
String surname;
int age;
int salary;

}

A client can have an object annotated as in the following example:
@Entity(name="ServerPerson")
class ClientPerson
{

@Id @Basic(alias="ssn") String socialSecurityNumber;
String surname;

}

This client then takes a server-side entity and projects the subset of the entity into
the client object. This projection leads to bandwidth and memory savings on a
client because the client has only the information it needs instead of all of the
information that is in the server side entity. Different applications can use their
own objects instead of forcing all applications to share a set of classes for data
access.

The client-side entity descriptor XML file is required in the following cases: if the
server is running with class-based entities while the client side is running classless;
or if the server is classless and the client uses class-based entities. A classless client
mode allows the client to still run entity queries without having access to the

64 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

physical classes. Assuming the server has registered the ServerPerson entity above,
the client would override the data grid with an entity.xml such as follows:
<entity-mappings xmlns="http://ibm.com/ws/projector/config/emd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/projector/config/emd ./emd.xsd">
<entity class-name="@ServerPerson " name="Order">

<description>"Entity named: Order"</description>
<attributes>

<id name="socialSecurityNumber" type="java.lang.String"/>
<basic name="surname" type="java.lang.String"/>

</attributes>
</entity>
</entity-mappings>

This will achieve an equivalent subset entity on the client, without requiring the
client to provide the actual annotated class. If the server is classless, and the client
is not, the client overrides with an entity descriptor XML file with a reference to
the class file.

Referencing the schema

If running in Java SE 5, then the application can be added to the objects by using
annotations. The EntityManager can read the schema from the annotations on
those objects. The application provides the eXtreme Scale run time with references
to these objects using the entity.xml file, which is referenced from the
objectgrid.xml file. The entity.xml file lists all the entities, each of which is
associated with either a class or a schema. If a proper class name is specified, then
the application attempts to read the Java SE 5 annotations from those classes to
determine the schema. If you do not annotate the class file or specify a classless
identifier as the class name, then the schema is taken from the XML file. The XML
file is used to specify all the attributes, keys, and relationships for each entity.

A local data grid does not need XML files. The program can obtain an ObjectGrid
reference and invoke the ObjectGrid.registerEntities method to specify a list of Java
SE 5 annotated classes or an XML file.

The run time uses the XML file or a list of annotated classes to find entity names,
attribute names and types, key fields and types, and relationships between entities.
If eXtreme Scale is running on a server or in stand-alone mode, then it
automatically makes a map named after each entity. These maps can be
customized further using the objectgrid.xml file or APIs set either by the
application or injection frameworks such as Spring.

Entity metadata descriptor file

See “emd.xsd file” on page 59 for more information about the metadata descriptor
file.
Related reference

API documentation: EntityManager interface
“EntityTransaction interface” on page 82
You can use the EntityTransaction interface to demarcate transactions.

Interacting with EntityManager
Applications typically first obtain an ObjectGrid reference, and then a Session from
that reference for each thread. Sessions cannot be shared between threads. An extra
method on Session, the getEntityManager method, is available. This method
returns a reference to an entity manager to use for this thread. The EntityManager

Chapter 3. Accessing data in WebSphere eXtreme Scale 65

interface can replace the Session and ObjectMap interfaces for all applications. You
can use these EntityManager APIs if the client has access to the defined entity
classes.

Obtaining an EntityManager instance from a session

The getEntityManager method is available on a Session object. The following code
example illustrates how to create a local ObjectGrid instance and access the
EntityManager. See the EntityManager interface in the API documentation for
details about all the supported methods.
ObjectGrid og =
ObjectGridManagerFactory.getObjectGridManager().createObjectGrid("intro-grid");
Session s = og.getSession();
EntityManager em = s.getEntityManager();

A one-to-one relationship exists between the Session object and EntityManager
object. You can use the EntityManager object more than once.

Persisting an entity

Persisting an entity means saving the state of a new entity in an ObjectGrid cache.
After the persist method is called, the entity is in the managed state. Persist is a
transactional operation, and the new entity is stored in the ObjectGrid cache after
the transaction commits.

Every entity has a corresponding BackingMap in which the tuples are stored. The
BackingMap has the same name as the entity, and is created when the class is
registered. The following code example demonstrates how to create an Order
object by using the persist operation.
Order order = new Order(123);
em.persist(order);
order.setX();
...

The Order object is created with the key 123, and the object is passed to the persist
method. You can continue to modify the state of the object before you commit the
transaction.

Important: The preceding example does not include any required transactional
boundaries, such as begin and commit. See the the entity manager tutorial in the
Product Overview for more information.

Finding an entity

You can locate the entity in the ObjectGrid cache with the find method by
providing a key after the entity is stored in the cache. This method does not
require any transactional boundary, which is useful for read-only semantics. The
following example illustrates that only one line of code is needed to locate the
entity.
Order foundOrder = (Order)em.find(Order.class, new Integer(123));

Removing an entity

The remove method, like the persist method, is a transactional operation. The
following example shows the transactional boundary by calling the begin and
commit methods.

66 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

em.getTransaction().begin();
Order foundOrder = (Order)em.find(Order.class, new Integer(123));
em.remove(foundOrder);
em.getTransaction().commit();

The entity must first be managed before it can be removed, which you can
accomplish by calling the find method within the transactional boundary. Then call
the remove method on the EntityManager interface.

Invalidating an entity

The invalidate method behaves much like the remove method, but does not invoke
any Loader plug-ins. Use this method to remove entities from the ObjectGrid, but
to preserve them in the backend data store.
em.getTransaction().begin();
Order foundOrder = (Order)em.find(Order.class, new Integer(123));
em.invalidate(foundOrder);
em.getTransaction().commit();

The entity must first be managed before it can be invalidated, which you can
accomplish by calling the find method within the transactional boundary. After
you call the find method, you can call the invalidate method on the EntityManager
interface.

Updating an entity

The update method is also a transactional operation. The entity must be managed
before any updates can be applied.
em.getTransaction().begin();
Order foundOrder = (Order)em.find(Order.class, new Integer(123));
foundOrder.date = new Date(); // update the date of the order
em.getTransaction().commit();

In the preceding example, the persist method is not called after the entity is
updated. The entity is updated in the ObjectGrid cache when the transaction is
committed.

Queries and query queues

With the flexible query engine, you can retrieve entities by using EntityManager
API. Create SELECT type queries over an entity or Object-based schema by using
the ObjectGrid query language. Query interface explains in detail how you can run
the queries by using the EntityManager API. See the Query API for more
information about using queries.

An entity QueryQueue is a queue-like data structure associated with an entity
query. It selects all the entities that match the WHERE condition on the query filter
and puts the result entities in a queue. Clients can then iteratively retrieve entities
from this queue. See “Entity query queues” on page 79for more information.

Entity listeners and callback methods
Applications can be notified when the state of an entity transitions from state to
state. Two callback mechanisms exist for state change events: life cycle callback
methods that are defined on an entity class and are invoked whenever the entity
state changes, and entity listeners, which are more general because the entity
listener can be registered on several entities.

Chapter 3. Accessing data in WebSphere eXtreme Scale 67

Life cycle of an entity instance

An entity instance has the following states:
v New: A newly created entity instance that does not exist in the eXtreme Scale

cache.
v Managed: The entity instance exists in the eXtreme Scale cache and is retrieved

or persisted using the entity manager. An entity must be associated with an
active transaction to be in the managed state.

v Detached: The entity instance exists in the eXtreme Scale cache, but is no longer
associated with an active transaction.

v Removed: The entity instance is removed, or is scheduled to be removed, from
the eXtreme Scale cache when the transaction is flushed or committed.

v Invalidated: The entity instance is invalidated, or is scheduled to be invalidated,
from the eXtreme Scale cache when the transaction is flushed or committed.

When entities change from state to state, you can invoke life-cycle, call-back
methods.

The following sections further describe the meanings of New, Managed, Detached,
Removed and Invalidated states as the states apply to an entity.

Entity life cycle callback methods

Entity life cycle callback methods can be defined on the entity class and are
invoked when the entity state changes. These methods are useful for validating
entity fields and updating transient state that is not usually persisted with the
entity. Entity life cycle callback methods can also be defined on classes that are not
using entities. Such classes are entity listener classes, which can be associated with
multiple entity types. life cycle callback methods can be defined using both
metadata annotations and a entity metadata XML descriptor file:
v Annotations: life cycle callback methods can be denoted using the PrePersist,

PostPersist, PreRemove, PostRemove, PreUpdate, PostUpdate, and PostLoad
annotations in an entity class.

v Entity XML descriptor : life cycle callback methods can be described using XML
when annotations are not available.

Entity listeners

An entity listener class is a class that does not use entities that defines one or more
entity life cycle callback methods. Entity listeners are useful for general purpose
auditing or logging applications. Entity listeners can be defined using both
metadata annotations and a entity metadata XML descriptor file:
v Annotation: The EntityListeners annotation can be used to denote one or more

entity listener classes on an entity class. If multiple entity listeners are defined,
the order in which they are invoked is determined by the order in which they
are specified in the EntityListeners annotation.

v Entity XML descriptor: The XML descriptor can be used as an alternative to
specify the invocation order of entity listeners or to override the order that is
specified in metadata annotations.

Callback method requirements

Any subset or combination of annotations can be specified on an entity class or a
listener class. A single class cannot have more than one life cycle callback method

68 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

for the same life cycle event. However, the same method can be used for multiple
callback events. The entity listener class must have a public no-arg constructor.
Entity listeners are stateless. The life cycle of an entity listener is unspecified.
eXtreme Scale does not support entity inheritance, so callback methods can only be
defined in the entity class, but not in the superclass.

Callback method signature

Entity life cycle callback methods can be defined on an entity listener class, directly
on an entity class, or both. Entity life cycle callback methods can be defined using
both metadata annotations and the entity XML descriptor. The annotations used for
callback methods on the entity class and on the entity listener class are the same.
The signatures of the callback methods are different when defined on an entity
class versus an entity listener class. Callback methods defined on an entity class or
mapped superclass have the following signature:
void <METHOD>()

Callback methods that are defined on an entity listener class have the following
signature:
void <METHOD>(Object)

The Object argument is the entity instance for which the callback method is
invoked. The Object argument can be declared as a java.lang.Object object or the
actual entity type.

Callback methods can have public, private, protected, or package level access, but
must not be static or final.

The following annotations are defined to designate life cycle event callback
methods of the corresponding types:
v com.ibm.websphere.projector.annotations.PrePersist
v com.ibm.websphere.projector.annotations.PostPersist
v com.ibm.websphere.projector.annotations.PreRemove
v com.ibm.websphere.projector.annotations.PostRemove
v com.ibm.websphere.projector.annotations.PreUpdate
v com.ibm.websphere.projector.annotations.PostUpdate
v com.ibm.websphere.projector.annotations.PostLoad

See the API Documentation for more details. Each annotation has an equivalent
XML attribute defined in the entity metadata XML descriptor file.

Life cycle callback method semantics

Each of the different life cycle callback methods has a different purpose and is
called in different phases of the entity life cycle:

PrePersist
Invoked for an entity before the entity has been persisted to the store,
which includes entities that have been persisted due to a cascading
operation. This method is invoked on the thread of the
EntityManager.persist operation.

PostPersist
Invoked for an entity after the entity has been persisted to the store, which
includes entities that have been persisted due to a cascading operation.

Chapter 3. Accessing data in WebSphere eXtreme Scale 69

This method is invoked on the thread of the EntityManager.persist
operation. It is called after the EntityManager.flush or
EntityManager.commit is called.

PreRemove
Invoked for an entity before the entity has been removed, which includes
entities that have been removed due to a cascading operation. This method
is invoked on the thread of the EntityManager.remove operation.

PostRemove
Invoked for an entity after the entity has been removed, which includes
entities that have been removed due to a cascading operation. This method
is invoked on the thread of the EntityManager.remove operation. It is
called after the EntityManager.flush or EntityManager.commit is called.

PreUpdate
Invoked for an entity before the entity has been updated to the store. This
method is invoked on the thread of the transaction flush or commit
operation.

PostUpdate
Invoked for an entity after the entity has been updated to the store. This
method is invoked on the thread of the transaction flush or commit
operation.

PostLoad
Invoked for an entity after the entity has been loaded from the store which
includes any entities that are loaded through an association. This method is
invoked on the thread of the loading operation, such as EntityManager.find
or a query.

Duplicate life cycle callback methods

If multiple callback methods are defined for an entity life cycle event, the ordering
of the invocation of these methods is as follows:
1. life cycle callback methods defined in the entity listeners: The life cycle

callback methods that are defined on the entity listener classes for an entity
class are invoked in the same order as the specification of the entity listener
classes in the EntityListeners annotation or the XML descriptor.

2. Listener super class: Callback methods defined in the super class of the entity
listener are invoked before the children.

3. Entity life cycle methods: WebSphere eXtreme Scale does not support entity
inheritance, so the entity life cycle methods can only be defined in the entity
class.

Exceptions

Life cycle callback methods might result in run time exceptions. If a life cycle
callback method results in a run time exception within a transaction, the
transaction is rolled back. No further life cycle callback methods are invoked after
a runtime exception results.

Entity listener examples
You can write EntityListeners based on your requirements. Several example scripts
follow.

70 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

EntityListeners example using annotations

The following example shows the life-cycle callback method invocations and order
of the invocations. Assume an entity class Employee and two entity listeners exist:
EmployeeListener and EmployeeListener2.
@Entity
@EntityListeners(EmployeeListener.class, EmployeeListener2.class)
public class Employee {

@PrePersist
public void checkEmployeeID() {

....
}

}

public class EmployeeListener {
@PrePersist
public void onEmployeePrePersist(Employee e) {

....
}

}

public class PersonListener {
@PrePersist
public void onPersonPrePersist(Object person) {

....
}

}

public class EmployeeListener2 {
@PrePersist
public void onEmployeePrePersist2(Object employee) {

....
}

}

If a PrePersist event occurs on an Employee instance, the following methods are
called in order:
1. onEmployeePrePersist method
2. onPersonPrePersist method
3. onEmployeePrePersist2 method
4. checkEmployeeID method

Entity listeners example using XML

The following example shows how to set an entity listener on an entity using the
entity descriptor XML file:
<entity

class-name="com.ibm.websphere.objectgrid.sample.Employee"
name="Employee" access="FIELD">
<attributes>

<id name="id" />
<basic name="value" />

</attributes>
<entity-listeners>

<entity-listener
class-name="com.ibm.websphere.objectgrid.sample.EmployeeListener">
<pre-persist method-name="onListenerPrePersist" />
<post-persist method-name="onListenerPostPersist" />

</entity-listener>
</entity-listeners>
<pre-persist method-name="checkEmployeeID" />

</entity>

Chapter 3. Accessing data in WebSphere eXtreme Scale 71

The entity Employee is configured with a
com.ibm.websphere.objectgrid.sample.EmployeeListener entity listener class ,
which has two life-cycle callback methods defined. The onListenerPrePersist
method is for the PrePersist event, and the onListenerPostPersist method is for the
PostPersist event. Also, the checkEmployeeID method in the Employee class is
configured to listen for the PrePersist event.

EntityManager fetch plan support
A FetchPlan is the strategy the eXtreme Scale EntityManager uses for retrieving
associated objects if the application needs to access relationships.

Example

Assume for example that your application has two entities: Department and
Employee. The relationship between the Department entity and the Employee
entity is a bi-directional one-to-many relationship: One department has many
employees, and one employee belongs to only one department. Since most of the
time, when Department entity is fetched, its employees are likely to be fetched, the
fetch type of this one-to-many relationship is set to be EAGER.

Here is a snippet of the Department class.
@Entity
public class Department {

@Id
private String deptId;

@Basic
String deptName;

@OneToMany(fetch = FetchType.EAGER, mappedBy="department", cascade = {CascadeType.PERSIST})
public Collection<Employee> employees;

}

In a distributed environment, when an application calls
em.find(Department.class, "dept1") to find a Department entity with key
"dept1", this find operation will get the Department entity and all its eager-fetched
relations. In the case of the preceding snippet, these are all the employees of
department "dept1".

Prior to WebSphere eXtreme Scale 6.1.0.5, the retrieval of one Department entity
and N Employee entities incurred N+1 client-server trips because the client
retrieved one entity for one client-server trip. You can improve performance if you
retrieve these N+1 entities in one trip.

Fetch plan

A fetch plan can be used to customize how to fetch eager relationships by
customizing the maximum depth of the relationships. The fetch depth overrides
eager relations greater than the specified depth to lazy relations. By default, the
fetch depth is the maximum fetch depth. This means that eager relationships of all
levels that are eager-navigable from the root entity will be fetched. An EAGER
relationship is eager-navigable from a root entity if and only if all the relations
starting from the root entity to it are configured as eager-fetched.

In the previous example, the Employee entity is eager-navigable from the
Department entity because the Department-Employee relationship is configured as
eager-fetched.

72 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

If the Employee entity has another eager relationship to an Address entity for
instance, then the Address entity is also eager-navigable from the Department
entity. However, if the Department-Employee relationships were configured as
lazy-fetch, then the Address entity is not eager-navigable from the Department
entity because the Department-Employee relationship breaks the eager fetch chain.

A FetchPlan object can be retrieved from the EntityManager instance. The
application can use the setMaxFetchDepth method to change the maximum fetch
depth.

A fetch plan is associated with an EntityManager instance. The fetch plan applies
to any fetch operation, more specifically as follows.
v EntityManager find(Class class, Object key) and findForUpdate(Class

class, Object key) operations
v Query operations
v QueryQueue operations

The FetchPlan object is mutable. Once changed, the changed value will be applied
to the fetch operations executed afterward.

A fetch plan is important for a distributed deployment because it decides whether
the eager-fetched relationship entities are retrieved with the root entity in one
client-server trip or more than one.

Continuing with the previous example, consider further that the fetch plan has
maximum depth set to infinity. In that case, when an application calls
em.find(Department.class, "dept1") to find a Department, this find operation
will get one Department entity and N employee entities in one client-server trip.
However, for a fetch plan with maximum fetch depth set to zero, only the
Department object will be retrieved from the server, while the Employee entities
are retrieved from the server only when the employees collection of the
Department object is accessed.

Different fetch plans

You have several different fetch plans based on your requirements, explained in
the following sections.

Impact on a distributed grid

v Infinite-depth fetch plan: An infinite-depth fetch plan has its maximum fetch depth
set to FetchPlan.DEPTH_INFINITE.
In a client-server environment, if an infinite-depth fetch plan is used, then all the
relations that are eager-navigable from the root entity will be retrieved in one
client-server trip.
Example: If the application is interested in all the Address entities of all
employees of a particular Department, then it uses an infinite-depth fetch plan
to retrieve all the associated Address entities. The following code only incurs
one client-server trip.
em.getFetchPlan().setMaxFetchDepth(FetchPlan.DEPTH_INFINITE);

tran.begin();
Department dept = (Department) em.find(Department.class, "dept1");
// do something with Address object.
for (Employee e: dept.employees) {

for (Address addr: e.addresses) {

Chapter 3. Accessing data in WebSphere eXtreme Scale 73

// do something with addresses.
}

}
tran.commit();

v Zero-depth fetch plan: A zero-depth fetch plan has its maximum fetch depth set to
0.
In a client-server environment, if a zero fetch plan is used, then only the root
entity will be retrieved in the first client-server trip. All the eager relationships
are treated as if they were lazy.
Example: In this example, the application is only interested in the Department
entity attribute. It does not need to access its employees, so the application sets
the fetch plan depth to 0.
Session session = objectGrid.getSession();
EntityManager em = session.getEntityManager();
EntityTransaction tran = em.getTransaction();
em.getFetchPlan().setMaxFetchDepth(0);

tran.begin();
Department dept = (Department) em.find(Department.class, "dept1");
// do something with dept object.
tran.commit();

v Fetch plan with depth k:
A k-depth fetch plan has its maximum fetch depth set to k.
In a client-server eXtreme Scale environment, if a k-depth fetch plan is used,
then all the relationships eager-navigable from the root entity within k steps will
be retrieved in the first client-server trip.
The infinite-depth fetch plan (k = infinity) and zero-depth fetch plan (k = 0) are
just two examples of the k-depth fetch plan.
To continue expanding on the previous example, assume there is another eager
relationship from the entity Employee to the entity Address. If the fetch plan has
maximum fetch depth set to 1, then the em.find(Department.class, "dept1")
operation will retrieve the Department entity and all its Employee entities in one
client-server trip. However, the Address entities will not be retrieved because
they are not eager-navigable to the Department entity within 1 step, but 2 steps.
If you use a fetch plan with depth set to 2, then the em.find(Department.class,
"dept1") operation will retrieve the Department entity, all its Employee entities,
and all Address entities associated with the Employee entities in one
client-server trip.

Tip: The default fetch plan has maximum fetch depth set to infinity, so the
default behavior of a fetch operation can change. All the eager-navigable
relationships from the root entity are retrieved. Instead of multiple trips, now
the fetch operation only incurs one client-server trip with the default fetch plan.
To keep the settings for the product from the prior version, set the fetch depth to
0.

v Fetch plan used on query:

If you execute an entity query you can also use a fetch plan to customize
relationship retrieval.
For example, the query SELECT d FROM Department d WHERE
"d.deptName=’Department’" result has a relationship to the Department entity.
Notice the fetch plan depth starts with the query result association: In this case,
the Department entity, not the query result itself. That is, the Department entity
is on fetch-depth level 0. Therefore a fetch plan with maximum fetch depth 1
will retrieve the Department entity and its Employee entities in one client-server
trip.

74 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

Example: In this example, the fetch plan depth is set to 1, so the Department
entity and its Employee entities are retrieved in one client-server trip, but the
Address entities will not be retrieved in the same trip.

Important: If a relationship is ordered, using either OrderBy annotation or
configuration, then it is considered an eager relationship even if it is configured as
lazy-fetch.

Performance considerations in a distributed environment

By default, all relationships that are eager-navigable from the root entity will be
retrieved in one client-server trip. This can improve performance if all the
relationships are going to be used. However, in certain usage scenarios, not all
relationships eager-navigable from the root entity are used, so they incur both
run-time overhead and bandwidth overhead by retrieving those unused entities.

For such cases, the application can set the maximum fetch depth to a small
number to decrease the depth of entities to be retrieved by making all the eager
relations after that certain depth lazy. This setting can improve performance.

Proceeding still further with the previous Department-Employee-Address example,
by default, all the Address entities associated with employees of the Department
"dept1" will be retrieved when em.find(Department.class, "dept1") is called. If
the application does not use Address entities, it can set the maximum fetch depth
to 1, so the Address entities will not be retrieved with the Department entity.

EntityManager interface performance impact
An environment requiring every application to use the same data access objects for
a given datastore would be highly impractical. In contrast, the EntityManager
interface that is provided with WebSphere eXtreme Scale separates applications
from the state held in its server grid datastore.

The cost of using the EntityManager interface is not high and depends on the type
of work being performed. Always use the EntityManager interface and optimize
the crucial business logic after the application is complete. You can rework any
code that uses EntityManager interfaces to use maps and tuples. Generally, this
code rework might be necessary for ten percent of the code.

If you use relationships between objects, then the performance impact is lower
because an application that is using maps needs to manage those relationships
similarly to the EntityManager interface.

Applications that use the EntityManager interface do not need to provide an
ObjectTransformer because it is optimized automatically.

Reworking EntityManager code for maps

A sample entity follows:
@Entity
public class Person
{
@Id
String ssn;
String firstName;

Chapter 3. Accessing data in WebSphere eXtreme Scale 75

@Index
String middleName;
String surname;
}

Some code to find the entity and update the entity follows:
Person p = null;
s.begin();
p = (Person)em.find(Person.class, "1234567890");
p.middleName = String.valueOf(inner);
s.commit();

The same code using Maps and Tuples follows:
Tuple key = null;
key = map.getEntityMetadata().getKeyMetadata().createTuple();
key.setAttribute(0, "1234567890");

// The Copy Mode is always NO_COPY for entity maps if not using COPY_TO_BYTES.
// Either we need to copy the tuple or we can ask the ObjectGrid to do it for us:
map.setCopyMode(CopyMode.COPY_ON_READ);
s.begin();
Tuple value = (Tuple)map.get(key);
value.setAttribute(1, String.valueOf(inner));
map.update(key, value);
value = null;
s.commit();

Both of these code snippets have the same result, and an application can use either
or both snippets.

The second code snippet shows how to use maps directly and how to work with
the tuples (the key and value pairs). The value tuple has three attributes:
firstName, middlename, and surname, indexed at 0, 1, and 2 respectively. The key
tuple has a single attribute the ID number is indexed at zero. You can see how
Tuples are created by using the EntityMetadata#getKeyMetaData or
EntityMetadata#getValueMetaData methods. You must use these methods to create
Tuples for an Entity. You cannot implement the Tuple interface and pass an
instance of your Tuple implementation.

Instrumentation agent
You can improve the performance of field-access entities by enabling the
WebSphere eXtreme Scale instrumentation agent when using Java Development Kit
(JDK) Version 1.5 or later.

Enabling eXtreme Scale agent on JDK Version 1.5 or above

The ObjectGrid agent can be enabled with a Java command line option with the
following syntax:
-javaagent:jarpath[=options]

The jarpath value is the path to an eXtreme Scale runtime Java archive (JAR) file
that contains eXtreme Scale agent class and supporting classes such as the
objectgrid.jar, wsobjectgrid.jar, ogclient.jar, wsogclient.jar, and
ogagent.jar files. Typically, in a stand-alone Java program or in a Java Platform,
Enterprise Edition environment that is not running WebSphere Application Server,
use the objectgrid.jar or ogclient.jar file. In a WebSphere Application Server or
a multi-classloaders environment, you must use the ogagent.jar file in the Java
command line agent option.

76 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

In addition to the agent JAR file, the cglib.jar file is required for inclusion in the
bootstrap class path. In WebSphere Application Server, although the cglib.jar file
might already be in the lib directory and included in application server class path,
you must specify the cglib.jar file path in the class path property of the Java
virtual machine (JVM) that is associated with the application server.

Provide the ogagent.config file in the class path or use agent options to specify
additional information.

eXtreme Scale agent options

config
Overrides the configuration file name.

include
Specifies or overrides transformation domain definition that is the first part
of the configuration file.

exclude
Specifies or overrides the @Exclude definition.

fieldAccessEntity
Specifies or overrides the @FieldAccessEntity definition.

trace Specifies a trace level. Levels can be ALL, CONFIG, FINE, FINER, FINEST,
SEVERE, WARNING, INFO, and OFF.

trace.file
Specifies the location of the trace file.

The semicolon (;) is used as a delimiter to separate each option. The comma (,)
is used as a delimiter to separate each element within an option. The following
example demonstrates the eXtreme Scale agent option for a Java program:
-javaagent:objectgridRoot/lib/objectgrid.jar=config=myConfigFile;
include=includedPackage;exclude=excludedPackage;
fieldAccessEntity=package1,package2

ogagent.config file

The ogagent.config file is the designated eXtreme Scale agent configuration file
name. If the file name is in the class path, the eXtreme Scale agent finds and parses
the file. You can override the designated file name through the config option of
eXtreme Scale agent. The following example shows how to specify the
configuration file:
-javaagent:objectgridRoot/lib/objectgrid.jar=config=myOverrideConfigFile

An eXtreme Scale agent configuration file has the following parts:
v Transformation domain: The transformation domain part is first in the

configuration file. The transformation domain is a list of packages and classes
that are included in the class transformation process. This transformation
domain must include all classes that are field-access entity classes, and other
classes that refer to these field-access entity classes. Field-access entity classes
and those classes that refer to these field-access entity classes construct the
transformation domain. If you plan to specify field-access entity classes in the
@FieldAccessEntity part, then you do not need to include field-access entity
classes here. The transformation domain must be complete. Otherwise, you
might see a FieldAccessEntityNotInstrumentedException exception.

Chapter 3. Accessing data in WebSphere eXtreme Scale 77

v @Exclude: The @Exclude token indicates that packages and classes listed after
this token are excluded from the transformation domain.

v @FieldAccessEntity: The @FieldAccessEntity token indicates that packages and
classes listed after this token are field-access Entity packages and classes. If no
line exists after the @FieldAccessEntity token, then its equivalent is "No
@FieldAccessEntity specified". The eXtreme Scale agent determines that there are
no field-access Entity packages and classes defined. If there are lines after the
@FieldAccessEntity token, then they represent the user-specified field-access
Entity packages and classes. For example, "field-access entity domain". The
field-access entity domain is a sub-domain of the transformation domain.
Packages and classes that are listed in the field-access entity domain are a part
of the transformation domain, even when they are not listed in the
transformation domain. The @Exclude token, which lists packages and classes
that are excluded from transformation, has no impact on the field-access Entity
domain. When @FieldAccessEntity token is specified, all field-access entities
must be in this field-access Entity domain. Otherwise, a
FieldAccessEntityNotInstrumentedException exception might occur.

Example agent configuration file (ogagent.config)
################################
The # indicates comment line
################################
This is an ObjectGrid agent config file (the designated file name is ogagent.config) that can be found and parsed by the ObjectGrid agent
if it is in classpath.
If the file name is "ogagent.config" and in classpath, Java program runs with -javaagent:objectgridRoot/ogagent.jar will have
ObjectGrid agent enabled.
If the file name is not "ogagent.config" but in classpath, you can specify the file name in config option of ObjectGrid agent
-javaagent:objectgridRoot/lib/objectgrid.jar=config=myOverrideConfigFile
See comments below for more info regarding instrumentation setting override.

The first part of the configuration is the list of packages and classes that should be included in transformation domain.
The includes (packages/classes, construct the instrumentation doamin) should be in the beginning of the file.
com.testpackage
com.testClass

Transformation domain: The above lines are packages/classes that construct the transformation domain.
The system will process classes with name starting with above packages/classes for transformation.
#
@Exclude token : Exclude from transformation domain.
The @Exclude token indicates packages/classes after that line should be excluded from transformation domain.
It is used when user want to exclude some packages/classes from above specified included packages
#
@FieldAccessEntity token: Field-access Entity domain.
The @FieldAccessEntity token indicates packages/classes after that line are field-access Entity packages/classes.
If there is no lilne after the @FieldAccessEntity token, it is equivalent to "No @FieldAccessEntity specified".
The runtime will consider the user does not specify any field-access Entity packages/classes.
The "field-acces Entity domain" is a sub-domain of transformation domain.
#
Packages/classes listed in the "field-access Entity domain" will always be part of transformation domain,
even they are not listed in transformation domain.
The @Exclude, which lists packages/classes excluded from transformation, has no impact on the "field-acces Entity domain".
Note: When @FieldAccessEntity is specified, all field-access entities must be in this field-acces Entity domain,
otherwise, FieldAccessEntityNotInstrumentedException may occur.
#
The default ObjectGrid agent config file name is ogagent.config
The runtime will look for this file as a resource in classpath and process it.
Users can override this designated ObjectGrid agent config file name via config option of agent.
#
e.g.
javaagent:objectgridRoot/lib/objectgrid.jar=config=myOverrideConfigFile
#
The instrumentation definition, including transformation domain, @Exclude, and @FieldAccessEntity can be overriden individually
by corresponding designated agent options.
Designated agent options include:
include -> used to override instrumentation domain definition that is the first part of the config file
exclude -> used to override @Exclude definition
fieldAccessEntity -> used to override @FieldAccessEntity definition
#
Each agent option should be separated by ";"
Within the agent option, the package or class should be seperated by ","
#
The following is an example that does not override the config file name:
-javaagent:objectgridRoot/lib/objectgrid.jar=include=includedPackage;exclude=excludedPackage;fieldAccessEntity=package1,package2
#
################################

@Exclude
com.excludedPackage
com.excludedClass

@FieldAccessEntity

Performance consideration

For better performance, specify the transformation domain and field-access entity
domain.

78 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

Entity query queues
Query queues allow applications to create a queue qualified by a query in the
server-side or local eXtreme Scale over an entity. Entities from the query result are
stored in this queue. Currently, query queue is only supported in a map that is
using the pessimistic lock strategy.

A query queue is shared by multiple transactions/clients. After the query queue
becomes empty, the entity query associated with this queue is re-run and new
results are added to the queue. A query queue is uniquely identified by the entity
query string and parameters. There is only one instance for each unique query
queue in one ObjectGrid instance. See the EntityManager API documentation for
additional information.

Query queue example

The following example shows how query queue can be used.
/**
* Get a unassigned question type task
*/
private void getUnassignedQuestionTask() throws Exception {

EntityManager em = og.getSession().getEntityManager();
EntityTransaction tran = em.getTransaction();

QueryQueue queue = em.createQueryQueue("SELECT t FROM Task t
WHERE t.type=?1 AND t.status=?2", Task.class);
queue.setParameter(1, new Integer(Task.TYPE_QUESTION));
queue.setParameter(2, new Integer(Task.STATUS_UNASSIGNED));

tran.begin();
Task nextTask = (Task) queue.getNextEntity(10000);
System.out.println("next task is " + nextTask);
if (nextTask != null) {

assignTask(em, nextTask);
}
tran.commit();

}

The previous example first creates a QueryQueue with a entity query string,
"SELECT t FROM Task t WHERE t.type=?1 AND t.status=?2". Then it sets the
QueryQueue object's parameters. This query queue represents all "unassigned"
tasks of the type "question". The QueryQueue object is very similar to an entity
Query object.

After the QueryQueue is created, an entity transaction is started and the
getNextEntity method is invoked, which retrieves the next available entity with a
timeout value set to 10 seconds. After the entity is retrieved, it is processed in the
assignTask method. The assignTask modifies the Task entity instance and changes
the status to "assigned" which effectively removes it from the queue since it no
longer matches the QueryQueue's filter. Once assigned, the transaction is
committed.

From this simple example, you can see a query queue is similar to an entity query.
However, they differ in the following ways:
1. Entities in the query queue can be retrieved in an iterative manner. The user

application decides the number of entities to be retrieved. For example, if
QueryQueue.getNextEntity(timeout) is used, only one entity is retrieved, and if
QueryQueue.getNextEntities(5, timeout) is used, 5 entities are retrieved. In a

Chapter 3. Accessing data in WebSphere eXtreme Scale 79

distributed environment, the number of entities directly decides the number of
bytes to be transferred from the server to client.

2. When an entity is retrieved from the query queue, a U lock is placed on the
entity so no other transactions can access it.

Retrieve entities in a loop

You can retrieve entities in a loop. An example that illustrates how to get all the
unassigned, question type tasks completed follows.
/**
* Get all unassigned question type tasks
*/
private void getAllUnassignedQuestionTask() throws Exception {

EntityManager em = og.getSession().getEntityManager();
EntityTransaction tran = em.getTransaction();

QueryQueue queue = em.createQueryQueue("SELECT t FROM Task t WHERE
t.type=?1 AND t.status=?2", Task.class);
queue.setParameter(1, new Integer(Task.TYPE_QUESTION));
queue.setParameter(2, new Integer(Task.STATUS_UNASSIGNED));

Task nextTask = null;

do {
tran.begin();
nextTask = (Task) queue.getNextEntity(10000);
if (nextTask != null) {

System.out.println("next task is " + nextTask);
}
tran.commit();

} while (nextTask != null);
}

If there are 10 unassigned question-type tasks in the entity map, you might expect
that you will have 10 entities printed to the console. However, if this example is
run, you will see the program never exits, which might be contrary to what you
assumed.

When a query queue is created and the getNextEntity is called, the entity query
associated with the queue is executed and the 10 results are populated into the
queue. When getNextEntity is called, an entity is taken off the queue. After 10
getNextEntity calls are executed, the queue is empty. The entity query will
automatically re-run. Since these 10 entities still exist and match the query queue's
filter criteria, they are populated into the queue again.

If the following line is added after the println() statement, you will see only 10
entities printed.

em.remove(nextTask);

Query queues deployed to all partitions

In a distributed eXtreme Scale, a query queue can be created for one partition or
all partitions. If a query queue is created for all partitions, there will be one query
queue instance in each partition.

When a client tries to get the next entity using the QueryQueue.getNextEntity or
QueryQueue.getNextEntities method, the client sends a request to one of the
partitions. A client sends peek and pin requests to the server:

80 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

v With a peek request, the client sends a request to one partition and the server
returns immediately. If there is an entity in the queue, the server sends a
response with the entity; if there is not, the server sends a response with no
entity. In either case, the server will return immediately.

v With a pin request, the client sends a request to one partition and the server
waits until an entity is available. If there is an entity in the queue, the server
sends a response with the entity immediately; if there is not, the server waits on
the queue until either an entity is available or the request times out.

An example of how an entity is retrieved for a query queue which is deployed to
all partitions (n) follows:
1. When a QueryQueue.getNextEntity or QueryQueue.getNextEntities method is

called, the client picks a random partition number from 0 to n-1.
2. The client sends peek request to the random partition.

v If an entity is available, the QueryQueue.getNextEntity or
QueryQueue.getNextEntities method exits by returning the entity.

v If an entity is not available and is not the last unvisited partition, the client
sends a peek request to the next partition.

v If an entity is not available and it is the last unvisited partition, the client
instead sends a pin request.

v If the pin request to the last partition times-out and there is still no data
available, the client will make a last effort by sending peek request to all
partitions serially one more round. Therefore, if any entity is available in the
previous partitions, the client will be able to get it.

Subset entity and no-entity support

The method to create a QueryQueue object in the entity manager follows:

public QueryQueue createQueryQueue(String qlString, Class entityClass);

The result in the query queue should be projected to the object defined by the
second parameter to the method, Class entityClass.

If this parameter is specified, the class must have the same entity name as
specified in the query string. This is useful if you want to project an entity into a
subset entity. If a null value is used as the entity class, then the result will not be
projected. The value stored in the map will be in a entity tuple format.

Client-side key collision

In distributed eXtreme Scale environment, query queue is only supported for
eXtreme Scale maps with pessimistic locking mode. Therefore, there is no near
cache on the client side. However, a client could have data (key and value) in the
transactional map. This potentially could lead to a key collision when an entity
retrieved from the server share the same key as an entry already in the
transactional map.

When a key collision happens, the eXtreme Scale client run time uses the following
rule to either throw an exception or silently override the data.
1. If the collided key is the key of the entity specified in the entity query

associated with the query queue, then an exception is thrown. In this case, the
transaction is rolled back, and the U lock on this entity key will be released on
the server side.

Chapter 3. Accessing data in WebSphere eXtreme Scale 81

2. Otherwise, if the collided key is the key of the entity association, the data in
the transactional map will be overridden without warning.

The key collision only happens when there is a data in the transactional map. In
other words, it only happens when a getNextEntity or getNextEntities call is called
in a transaction which has already been dirtied (a new data has been inserted or a
data has been updated). If an application does not want a key collision happen, it
should always call getNextEntity or getNextEntities in a transaction which has not
been dirtied.

Client failures

After a client sends a getNextEntity or getNextEntities request to the server, the
client could fail as follows:
1. The client sends a request to the server and then goes down.
2. The client gets one or more entities from the server and then goes down.

In the first case, the server discovers that the client is going down when it tries to
send back the response to the client. In the second case, when the client gets one or
more entities from the server, an X lock is placed on these entities. If the client
goes down, the transaction will eventually time out, and the X lock will be
released.

Query with ORDER BY clause

Generally, query queues do not honor the ORDER BY clause. If you call
getNextEntity or getNextEntities from the query queue, there is no guarantee the
entities are returned according to the order. The reason is that the entities cannot
be ordered across partitions. In the case that the query queue is deployed to all
partitions, when a getNextEntity or getNextEntities call is executed, a random
partition is picked to process the request. Therefore, the order is not guaranteed.

ORDER BY is honored if a query queue is deployed to a single partition.

For more information see “EntityManager Query API” on page 93.
Related reference

API documentation: EntityManager interface
“EntityTransaction interface”
You can use the EntityTransaction interface to demarcate transactions.

EntityTransaction interface
You can use the EntityTransaction interface to demarcate transactions.

Purpose

To demarcate a transaction, you can use the EntityTransaction interface, which is
associated with an entity manager instance. Use the EntityManager.getTransaction
method to retrieve the EntityTransaction instance for the entity manager. Each
EntityManager and EntityTransaction instance are associated with the Session. You
can demarcate transactions with either the EntityTransaction or Session. Methods
on the EntityTransaction interface do not have any checked exceptions. Only
runtime exceptions of type PersistenceException or its subclasses result.

82 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

For more information about the EntityTransaction interface, see the
EntityTransaction interface in the API documentation.
Related concepts

“Caching objects and their relationships (EntityManager API)” on page 51
Most cache products use map-based APIs to store data as key-value pairs. The
ObjectMap API and the dynamic cache in WebSphere Application Server, among
others, use this approach. However, map-based APIs have limitations. The
EntityManager API simplifies the interaction with the data grid by providing an
easy way to declare and interact with a complex graph of related objects.
“Entity query queues” on page 79
Query queues allow applications to create a queue qualified by a query in the
server-side or local eXtreme Scale over an entity. Entities from the query result are
stored in this queue. Currently, query queue is only supported in a map that is
using the pessimistic lock strategy.
“EntityManager in a distributed environment” on page 62
You can use EntityManager with a local ObjectGrid or in a distributed eXtreme
Scale environment. The main difference is how you connect to this remote
environment. After you establish a connection, there is no difference between using
a Session object or using the EntityManager API.

Query API
WebSphere eXtreme Scale provides a flexible query engine for retrieving entities
using the EntityManager API and Java objects using the ObjectQuery API.

WebSphere eXtreme Scale query capabilities

With the eXtreme Scale query engine, you can perform SELECT type queries over
an entity or object-based schema using the eXtreme Scale query language.

This query language provides the following capabilities:
v Single and multi-valued results
v Aggregate functions
v Sorting and grouping
v Joins
v Conditional expressions with subqueries
v Named and positional parameters
v eXtreme Scale index use
v Path expression syntax for object navigation
v Pagination

Query interface

Use the query interface to control entity query execution.

Use the EntityManager.createQuery(String) method to create a Query. You can use
each query instance multiple times with the EntityManager instance in which it
was retrieved.

Each query result produces an entity, where the entity key is the row ID (of type
long) and the entity value contains the field results of the SELECT clause. You can
use each query result in subsequent queries.

Chapter 3. Accessing data in WebSphere eXtreme Scale 83

http://publib.boulder.ibm.com/infocenter/wxsinfo/index.jsp

The following methods are available on the
com.ibm.websphere.objectgrid.em.Query interface.

public ObjectMap getResultMap()

The getResultMap method runs a SELECT query and returns the results in an
ObjectMap object with the results in query-specified order. The resulting
ObjectMap is valid only for the current transaction.

The map key is the result number, of type long, starting at 1. The map value is of
type com.ibm.websphere.projector.Tuple where each attribute and association is
named based on its ordinal position within the select clause of the query. Use the
method to retrieve the EntityMetadata for the Tuple object that is stored within the
map.

The getResultMap method is the fastest method for retrieving query result data
where multiple results can exist. You can retrieve the name of the resulting entity
using the ObjectMap.getEntityMetadata() and EntityMetadata.getName() methods.

Example: The following query returns two rows.
String ql = SELECT e.name, e.id, d from Employee e join e.dept d WHERE d.number=5
Query q = em.createQuery(ql);
ObjectMap resultMap = q.getResultMap();
long rowID = 1; // starts with index 1
Tuple tResult = (Tuple) resultMap.get(new Long(rowID));
while(tResult != null) {

// The first attribute is name and has an attribute name of 1
// But has an ordinal position of 0.
String name = (String)tResult.getAttribute(0);
Integer id = (String)tResult.getAttribute(1);

// Dept is an association with a name of 3, but
// an ordinal position of 0 since it’s the first association.
// The association is always a OneToOne relationship,
// so there is only one key.
Tuple deptKey = tResult.getAssociation(0,0);
...
++rowID;
tResult = (Tuple) resultMap.get(new Long(rowID));

}

public Iterator getResultIterator

The getResultIterator method runs a SELECT query and returns the query results
using an Iterator where each result is either an Object for a single-valued query, or
an Object array for a multiple-valued query. The values in the Object[] result are
stored in query order. The result Iterator is valid for the current transaction only.

This method is preferred for retrieving query results within the EntityManager
context. You can use the optional setResultEntityName(String) method to name the
resulting entity so that it can be used in further queries.

Example: The following query returns two rows.
String ql = SELECT e.name, e.id, e.dept from Employee e WHERE e.dept.number=5
Query q = em.createQuery(ql);
Iterator results = q.getResultIterator();
while(results.hasNext()) {

Object[] curEmp = (Object[]) results.next();
String name = (String) curEmp[0];
Integer id = (Integer) curEmp[1];
Dept d = (Dept) curEmp[2];
...

}

public Iterator getResultIterator(Class resultType)

84 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

The getResultIterator(Class resultType) method runs a SELECT query and returns
the query results using an entity Iterator. The entity type is determined by the
resultType parameter. The result Iterator is valid only for the current transaction.

Use this method when you want to use the EntityManager APIs to access the
resulting entities.

Example: The following query returns all of the employees and the department to
which they belong for one division, ordering by salary. To print out the five
employees with the highest salaries and then select work with employees from
only one department in the same working set, use the following code.
String string_ql = "SELECT e.name, e.id, e.dept from Employee e WHERE

e.dept.division=’Manufacturing’ ORDER BY e.salary DESC";
Query query1 = em.createQuery(string_ql);
query1.setResultEntityName("AllEmployees");
Iterator results1 = query1.getResultIterator(EmployeeResult.class);
int curEmployee = 0;
System.out.println("Highest paid employees");
while (results1.hasNext() && curEmployee++ < 5) {
EmployeeResult curEmp = (EmployeeResult) results1.next();
System.out.println(curEmp);
// Remove the employee from the resultset.
em.remove(curEmp);
}

// Flush the changes to the result map.
em.flush();

// Run a query against the local working set without the employees we
// removed
String string_q2 = "SELECT e.name, e.id, e.dept from AllEmployees e

WHERE e.dept.name=’Hardware’";
Query query2 = em.createQuery(string_q2);
Iterator results2 = query2.getResultIterator(EmployeeResult.class);
System.out.println("Subset list of Employees");
while (results2.hasNext()) {
EmployeeResult curEmp = (EmployeeResult) results2.next();
System.out.println(curEmp);
}

public Object getSingleResult

The getSingleResult method runs a SELECT query that returns a single result.

If the SELECT clause has more than one field defined, then the result is an object
array, where each element in the array is based on its ordinal position within the
SELECT clause of the query.
String ql = SELECT e from Employee e WHERE e.id=100"
Employee e = em.createQuery(ql).getSingleResult();

String ql = SELECT e.name, e.dept from Employee e WHERE e.id=100"
Object[] empData = em.createQuery(ql).getSingleResult();
String empName= (String) empData[0];
Department empDept = (Department) empData[1];

public Query setResultEntityName(String entityName)

The setResultEntityName(String entityName) method specifies the name of the
query result entity.

Chapter 3. Accessing data in WebSphere eXtreme Scale 85

Each time the getResultIterator or getResultMap methods are invoked, an entity
with an ObjectMap is dynamically created to hold the results of the query. If the
entity is not specified, or null, the entity and ObjectMap name are automatically
generated.

Because all query results are available for the duration of a transaction, a query
name cannot be reused in a single transaction.

public Query setPartition(int partitionId)

Set the partition to where the query routes.

This method is required if the maps in the query are partitioned and if the entity
manager does not have affinity to a single schema root entity partition.

Use the PartitionManager Interface to determine the number of partitions for the
backing map of a given entity.

The following table provides descriptions of the other methods that are available
through the query interface.

Table 9. Other methods.

Method Result

public Query setMaxResults(int maxResult) Set the maximum number of results to
retrieve.

public Query setFirstResult(int startPosition) Set the position of the first result to retrieve.

public Query setParameter(String name,
Object value)

Bind an argument to a named parameter.

public Query setParameter(int position,
Object value)

Bind an argument to a positional parameter.

public Query setFlushMode(FlushModeType
flushMode)

Set the flush mode type to be used when the
query runs, overriding the flush mode type
set on the EntityManager.

eXtreme Scale query elements

With the eXtreme Scale query engine, you can use a single query language for
searching the eXtreme Scale cache. This query language can query Java objects that
are stored in ObjectMap objects and Entity objects. Use the following syntax for
creating a query string.

An eXtreme Scale query is a string that contains the following elements:
v A SELECT clause that specifies the objects or values to return.
v A FROM clause that names the object collections.
v An optional WHERE clause that contains search predicates over the collections.
v An optional GROUP BY and HAVING clause (see eXtreme Scale query

aggregation functions).
v An optional ORDER BY clause that specifies the ordering of the result collection.

Collections of Java objects are identified in queries through the use of their name
in the query FROM clause.

86 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

The elements of query language are discussed in more detail in the following
related topics:
v “ObjectGrid query Backus-Naur Form” on page 105 syntax
v “Reference for eXtreme Scale queries” on page 97

The following topics describe the means to use the Query API:
v “EntityManager Query API” on page 93
v “Using the ObjectQuery API” on page 88

Querying data in multiple time zones
In a distributed scenario, queries actually run on servers. When querying data with
predicates of type calendar, java.util.Date and timestamp, the specified date time
value in a query is based on the local time zone of the server.

In a single time-zone system where all clients and servers run on same time zone,
you do not need to consider issues related to predicate types with calendar,
java.util.Date and timestamp. However, when clients and servers are in different
time zones, the specified date time value in queries is based on the server time
zone and may return unwanted data back to client. Without knowing the server
time zone, the specified date time value is meaningless. So the specified date time
value should consider the time zone offset difference between the target time zone
and the server time zone.

Time zone offset

For example, assume that a client is in [GMT-0] time zone and the server is in
[GMT-6] time zone. The server time zone is 6 hours behind the client. The client
would like to run the following query:
SELECT e FROM Employee e WHERE e.birthDate=’1999-12-31 06:00:00’

Assuming the entity Employee has a birthDate attribute that is of type
java.util.Date, the client is in [GMT-0] time zone and wants to retrieve Employees
with birthDate value as '1999-12-31 06:00:00 [GMT-0]' based on its time zone.

The query will run on the server and the birthDate value used by the query engine
will be '1999-12-31 06:00:00 [GMT-6]' that equals to '1999-12-31 12:00:00 [GMT-0]'.
Employees with birthDate value equal to '1999-12-31 12:00:00 [GMT-0]' will be
returned to the client. Thus, the client will not get wanted Employees with
birthDate value '1999-12-31 06:00:00 [GMT-0]'.

The problem described occurs because of the time zone difference between client
and server. To solve this problem, one approach is to calculate the time zone offset
between client and server and apply the time zone offset on the target date time
value in the query. In the previous query example, the time zone offset is -6 hours,
and the adjusted birthDate predicate should be “birthDate='1999-12-31 00:00:00'” if
the client intends to retrieve Employees with birthDate value '12-31 06:00:00
[GMT-0]'. With the adjusted birthDate value, the server will use '1999-12-31
00:00:00 [GMT-6]' that equals to target value '12-31 06:00:00 [GMT-0]', and the
required Employees will be returned to the client.

Distributed deployment in multiple time zones

If the distributed eXtreme Scale grid is deployed into multiple ObjectGrid servers
in various time zones, the adjusting time zone offset approach will not work

Chapter 3. Accessing data in WebSphere eXtreme Scale 87

because the client will not know which server will run the query and thus cannot
determine the time zone offset to use. The only solution is to use suffix ‘Z' (not
case sensitive) on JDBC date and time escape format to indicate using GMT time
zone based date time value. The suffix ‘Z' (not case sensitive) indicates to use GMT
time zone based date time value. Without the suffix ‘Z', the local time zone based
date time value will be used in the process that runs the query.

The following query is equivalent to the previous example, but uses the suffix ‘Z'
instead:
SELECT e FROM Employee e WHERE e.birthDate=’1999-12-31 06:00:00Z’

The query should find Employees with birthDate value ‘1999-12-31 06:00:00'. The
suffix ‘Z' indicates the specified birthDate value is GMT time zone based, so the
GMT time zone based birthDate value ‘1999-12-31 06:00:00 [GMT-0]' will be used
by the query engine for matching criteria value. Employees with birthDate
attribute value equal to this GMT based birthDate value ‘1999-12-31 06:00:00
[GMT-0]' will be included in query result. Using the suffix ‘Z' on JDBC date time
escape format in any query is crucial to make applications time zone safe. Without
this approach, the date time value is server time zone based and is meaningless
from the client perspective when clients and servers are in different time zones.

For more information, see the topic on inserting data for different time zones in the
Product Overview.

Using the ObjectQuery API
The ObjectQuery API provides methods for querying data in the ObjectGrid that is
stored using the ObjectMap API. When a schema is defined in the ObjectGrid
instance, the ObjectQuery API can be used to create and run queries over the
heterogeneous objects stored in the object maps.

Query and object maps

You can use an enhanced query capability for objects that are stored using the
ObjectMap API. These queries allow retrieval of objects using non-key attributes
and performs simple aggregations such as sum, avg, min, and max against all the
data that matches a query. Applications can construct a query using the
Session.createObjectQuery method. This method returns an ObjectQuery object
which can then be interrogated to obtain the query results. The query object also
allows the query to be customized before running the query. The query is run
automatically when any method returning the result is called.

88 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

Defining an ObjectMap schema

Object maps are used to store objects in various forms and are largely unaware of
the format. A schema must be defined in the ObjectGrid that defines the format of
the data. A schema is composed of the following pieces:
v The type of object stored in the ObjectMap
v Relationships between ObjectMaps
v The method for which each query should access the data attributes in the objects

(fields or property methods)
v The primary key attribute name in the object.

See Configuring an ObjectQuery schema for details.

For an example on creating a schema programmatically or using the ObjectGrid
descriptor XML file, see the tutorial on the ObjectQuery in the Product Overview.

Querying objects with the ObjectQuery API

The ObjectQuery interface allows the querying of non-entity objects, which are
heterogeneous objects that are stored directly in the ObjectGrid ObjectMaps. The
ObjectQuery API provides an easy way to find ObjectMap objects without using
the keyword and index mechanisms directly.

There are two methods for retrieving results from an ObjectQuery:
getResultIterator and getResultMap.

Retrieving query results using getResultIterator

Session

ObjectMap

Key1 Value1

POJO

ObjectMap

Key1 Value1

POJO

ObjectMap

Key1 Value1

POJO

ObjectMap

Key Value

POJO

ObjectMap

Key1 Value1

POJO

ObjectMap

Key1 Value1

POJO

ObjectMap

Key1 Value1

POJO

MapIndex

Index Key

ObjectMap

Key1 Value1

POJO

ObjectMap

ObjectQuery

Result maps

BackingMap Java Class
BackingMap Java Class
BackingMap Java Class

ObjectQuery Schema

1:Many

Application

1. createObjectQuery() 2. 3. getResults 4.

ObjectGrid

Figure 1. The interaction of the query with the ObjectGrid object maps and how a schema is defined for classes and
associated with an ObjectGrid map

Chapter 3. Accessing data in WebSphere eXtreme Scale 89

Query results are basically a list of attributes. Suppose the query was select a,b,c
from X where y=z. This query returns a list of rows containing a, b and c. This list
is actually stored in a transaction scoped Map, which means that you must
associate an artificial key with each row and use an integer that increases with
each row. This map is obtained using the ObjectQuery.getResultMap() method. You
can access the elements of each row using code similar to the following:
ObjectQuery q = session.createQuery(

"select c.id, c.firstName, c.surname from Customer c where c.surname=?1");

q.setParameter(1, "Claus");

Iterator iter = q.getResultIterator();
while(iter.hasNext())
{

Object[] row = (Object[])iter.next();
System.out.println("Found a Claus with id "

+ row[objectgrid: 0] + ", firstName: "
+ row[objectgrid: 1] + ", surname: "
+ row[objectgrid: 2]);

}

Retrieving query results using getResultMap

Query results can also be retrieved using the result map directly. The following
example shows a query retrieving specific parts of the matching Customers and
demonstrates how to access the resulting rows. Notice that if you use the
ObjectQuery object to access the data, then the generated long row identifier is
hidden. The long row is only visible when using the ObjectMap to access the
result.

When the transaction is completed this map disappears. The map is also only
visible to the session used, that is, normally to just the thread that created it. The
map uses a key of type Long which represents the row ID. The values stored in
the map either are of type Object or Object[], where each element matches the type
of the element in the select clause of query.
ObjectQuery q = em.createQuery(

"select c.id, c.firstName, c.surname from Customer c where c.surname=?1");
q.setParameter(1, "Claus");
ObjectMap qmap = q.getResultMap();
for(long rowId = 0; true; ++rowId)
{

Object[] row = (Object[]) qmap.get(new Long(rowId));
if(row == null) break;
System.out.println(" I Found a Claus with id " + row[0]

+ ", firstName: " + row[1]
+ ", surname: " + row[2]);

}

For examples on using the ObjectQuery, see the tutorial on the ObjectQuery API in
the Product Overview.

Configuring an ObjectQuery schema
ObjectQuery relies on schema or shape information to perform semantic checking
and to evaluate path expressions. This section describes how to define the schema
in XML or programmatically.

90 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

Defining the schema

The ObjectMap schema is defined in the ObjectGrid deployment descriptor XML or
programmatically using the normal eXtreme Scale configuration techniques. For an
example on how to create a schema, see “Configuring an ObjectQuery schema” on
page 90

Schema information describes plain old Java objects (POJOs): which attributes they
consist of and what types of attributes there might be, whether the attributes are
primary key fields, single-valued or multi-valued relationships, or bidirectional
relationships. Schema information directs ObjectQuery to use field access or
property access.

Queryable attributes

When the schema is defined in the ObjectGrid, the objects in the schema are
introspected using reflection to determine which attributes are available for
querying. You can query the following attribute types:
v Java primitive types including wrappers
v java.lang.String
v java.math.BigInteger
v java.math.BigDecimal
v java.util.Date
v java.sql.Date
v java.sql.Time
v java.sql.Timestamp
v java.util.Calendar
v byte[]
v java.lang.Byte[]
v char[]
v java.lang.Character[]
v J2SE enum

Embedded serializable types other than those stated previously can also be
included in a query result, but cannot be included in the WHERE or FROM clause
of the query. Serializable attributes are not navigable.

Attribute types can be excluded from the schema if the type is not serializable, the
field or property is static, or the field is transient. Since all map objects must be
serializable, the ObjectGrid only includes attributes that can be persisted from the
object. Other objects are ignored.

Field attributes

When the schema is configured to access the object using fields, all serializable,
non-transient fields are automatically incorporated into the schema. To select a
field attribute in a query, use the field identifier name as it exists in the class
definition.

All public, private, protected and package protected fields are included in the
schema.

Chapter 3. Accessing data in WebSphere eXtreme Scale 91

Property attributes

When the schema is configured to access the object using properties, all serializable
methods that follow the JavaBeans property naming conventions will automatically
be incorporated into the schema. To select a property attribute for the query, use
the JavaBeans style property name conventions.

All public, private, protected and package protected properties are included in the
schema.

In the following class, the following attributes are added to the schema: name,
birthday, valid.
public class Person {

public String getName(){}
private java.util.Date getBirthday(){}
boolean isValid(){}
public NonSerializableObject getData(){}

}

When using a CopyMode of COPY_ON_WRITE, the query schema must always
use property-based access. COPY_ON_WRITE creates proxy objects whenever
objects are retrieved from the map and can only access those objects using
property methods. Failure to do so will result in each query result being set to
null.

Relationships

Each relationship must be explicitly defined in the schema configuration. The
cardinality of the relationship is automatically determined by the type of the
attribute. If the attribute implements the java.util.Collection interface, then the
relationship is either a one-to-many or many-to-many relationship.

Unlike entity queries, attributes that refer to other cached objects must not store
direct references to the object. References to other objects are serialized as part of
the containing object's data. Instead, store the key to the related object.

For example, if there is a many-to-one relationship between a Customer and Order:
Incorrect. Storing an object reference.

public class Customer {
String customerId;
Collection<Order> orders;

}

public class Order {
String orderId;
Customer customer;

}

Correct. The key to the related object.

public class Customer {
String customerId;
Collection<String> orders;

}

public class Order {
String orderId;
String customer;

}

92 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

When a query is run that joins the two map objects together, the key will
automatically be inflated. For example, the following query would return
Customer objects:

SELECT c FROM Order o JOIN Customer c WHERE orderId=5

Using indexes

ObjectGrid uses index plugins to add indexes to maps. The query engine
automatically incorporates any indexes that are defined on a schema map element
of the type: com.ibm.websphere.objectgrid.plugins.index.HashIndex and the
rangeIndex property is set to true. If the index type is not HashIndex and the
rangeIndex property is not set to true, then the index is ignored by the query. See
Object Query tutorial the ObjectQuery tutorial in the Product Overview for an
example on how to add an index to the schema.

EntityManager Query API
The EntityManager API provides methods for querying data in the ObjectGrid that
is stored using the EntityManager API. The EntityManager Query API is used to
create and run queries over one or more entities defined in eXtreme Scale.

Query and ObjectMaps for entities

WebSphere Extended Deployment v6.1 introduced an enhanced query capability
for entities stored in eXtreme Scale. These queries allow objects to be retrieved
using non-key attributes and to perform simple aggregations such as the sum,
average, minimum, and maximum against all the data that matches a query.
Applications construct a query using the EntityManager.createQuery API. This
returns a Query object and can then be interrogated to obtain the query results.
The query object also allows the query to be customized before running the query.
The query is run automatically when any method returning the result is called.

Chapter 3. Accessing data in WebSphere eXtreme Scale 93

Retrieving query results using the getResultIterator method

Query results are a list of attributes. If the query was select a,b,c from X where
y=z, then a list of rows containing a, b and c is returned. This list is stored in a
transaction scoped Map, which means that you must associated an artificial key
with each row and use an integer that increases with each row. This map is
obtained using the Query.getResultMap method. The map has EntityMetaData,
which describes each row in the Map associated with it. You can access the
elements of each row using code similar to the following:
Query q = em.createQuery("select c.id, c.firstName, c.surname from Customer c where c.surname=?1");

q.setParameter(1, "Claus");

Iterator iter = q.getResultIterator();
while(iter.hasNext())
{

Object[] row = (Object[])iter.next();
System.out.println("Found a Claus with id " + row[objectgrid: 0]

+ ", firstName: " + row[objectgrid: 1]
+ ", surname: " + row[objectgrid: 2]);

}

Retrieving query results using getResultMap

The following code shows the retrieval of specific parts of the matching Customers
and shows how to access the resulting rows. If you use the Query object to access
the data, then the generated long row identifier is hidden. The long is only visible
when using the ObjectMap to access the result. When the transaction is completed,
then this Map disappears. The Map is only visible to the Session used, that is,
normally to just the thread that created it. The Map uses a Tuple for the key with a
single attribute, a long with the row ID. The value is another tuple with an
attribute for each column in the result set.

Session / EntityManager

ObjectMap

Key1 Value1

POJO

ObjectMap

Key1 Value1

POJO

ObjectMap

Key1 Value1

POJO

ObjectMap

Key Value

Tuple

ObjectMap

Key1 Value1

POJO

ObjectMap

Key1 Value1

POJO

ObjectMap

Key1 Value1

POJO

MapIndex

Index Key

ObjectMap

Key1 Value1

POJO

ObjectMap

Query

Result maps

BackingMap Entity
BackingMap Entity
BackingMap Entity

Entity Schema

1:Many

Application

1. createQuery() 2. 3. getResults 4.

ObjectGrid

Figure 2. The interaction of the query with the ObjectGrid object maps and how the entity schema is defined and
associated with an ObjectGrid map.

94 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

The following sample code demonstrates this:
Query q = em.createQuery("select c.id, c.firstName, c.surname from
Customer c where c.surname=?1");
q.setParameter(1, "Claus");
ObjectMap qmap = q.getResultMap();
Tuple keyTuple = qmap.getEntityMetadata().getKeyMetadata().createTuple();
for(long i = 0; true; ++i)
{

keyTuple.setAttribute(0, new Long(i));
Tuple row = (Tuple)qmap.get(keyTuple);
if(row == null) break;
System.out.println(" I Found a Claus with id " + row.getAttribute(0)

+ ", firstName: " + row.getAttribute(1)
+ ", surname: " + row.getAttribute(2));

}

Retrieving query results using an entity result iterator

The following code shows the query and the loop that retrieves each result row
using the normal Map APIs. The key for the Map is a Tuple. So, construct one of
the correct types using the createTuple method result in keyTuple. Try to retrieve
all rows with rowIds from 0 onwards. When you get returns null (indicating key
not found), then the loop finishes. Set the first attribute of keyTuple to be the long
that you want to find. The value returned by get is also a Tuple with an attribute
for each column in the query result. Then, pull each attribute from the value Tuple
using getAttribute.

Following is the next code fragment:
Query q2 = em.createQuery("select c.id, c.firstName, c.surname from Customer c where c.surname=?1");
q2.setResultEntityName("CustomerQueryResult");
q2.setParameter(1, "Claus");

Iterator iter2 = q2.getResultIterator(CustomerQueryResult.class);
while(iter2.hasNext())
{

CustomerQueryResult row = (CustomerQueryResult)iter2.next();
// firstName is the id not the firstName.
System.out.println("Found a Claus with id " + row.id

+ ", firstName: " + row.firstName
+ ", surname: " + row.surname);

}

em.getTransaction().commit();

Specified is a ResultEntityName value on the query. This value tells the query
engine that you want to project each row to a specific object, CustomerQueryResult
in this case. The class follows:
@Entity
public class CustomerQueryResult {
@Id long rowId;
String id;
String firstName;
String surname;
};

In the first snippet, notice that the each query row is returned as a
CustomerQueryResult object rather than an Object[]. The result columns of the
query are projected to the CustomerQueryResult object. Projecting the result is
slightly slower at run time but more readable. Query result Entities should not be
registered with eXtreme Scale at startup. If the entities are registered, then a global
Map with the same name is created, and the query fails with an error indicating
duplicate Map name.

Chapter 3. Accessing data in WebSphere eXtreme Scale 95

Simple queries with EntityManager
WebSphere eXtreme Scale comes with EntityManager query API.

The EntityManager query API is very similar to SQL other query engines that
query over objects. A query is defined, then the result is retrieved from the query
using various getResult methods.

The following examples refer to the entities used in the EntityManager tutorial in
the Product Overview.

Running a simple query

In this example, customers with the surname of Claus are queried:
em.getTransaction().begin();

Query q = em.createQuery("select c from Customer c where c.surname=’Claus’");

Iterator iter = q.getResultIterator();
while(iter.hasNext())
{

Customer c = (Customer)iter.next();
System.out.println("Found a claus with id " + c.id);

}

em.getTransaction().commit();

Using parameters

Since you want to find all customers with a surname of Claus, a parameter to
specify the surname is used since you might may want to use this query more
than once.

Positional Parameter Example

Query q = em.createQuery("select c from Customer c where c.surname=?1");
q.setParameter(1, "Claus");

Using parameters is very important when the query is used more than once. The
EntityManager needs to parse the query string and build a plan for the query,
which is expensive. By using a parameter, the EntityManager caches the plan for
the query, thereby reducing the time it takes to run a query.

Both positional and named parameters are used:

Named Parameter Example

Query q = em.createQuery("select c from Customer c where c.surname=:name");
q.setParameter("name", "Claus");

Using an index to improve performance

If there are millions of customers, then the previous query needs to scan over all
rows in the Customer Map. This is not very efficient. But eXtreme Scale provides a
mechanism for defining indexes over individual attributes in an entity. The query
automatically uses this index when appropriate, which can speed up queries
dramatically.

You can specify which attributes to index very simply by using the @Index
annotation on the entity attribute:

96 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

@Entity
public class Customer
{

@Id String id;
String firstName;
@Index String surname;
String address;
String phoneNumber;

}

The EntityManager creates an appropriate ObjectGrid index for the surname
attribute in the Customer entity and the query engine automatically uses the index,
which greatly decreases the query time.

Using pagination to improve performance

If there are a million customers named Claus, then it is not likely that you would
want to display a page displaying a million customers. It is more likely that you
would want to display 10 or 25 customers at a time.

The Query setFirstResult and setMaxResults methods helps by only returning a
subset of the results.

Pagination Example

Query q = em.createQuery("select c from Customer c where c.surname=:name");
q.setParameter("name", "Claus");
// Display the first page
q.setFirstResult=1;
q.setMaxResults=25;
displayPage(q.getResultIterator());

// Display the second page
q.setFirstResult=26;
displayPage(q.getResultIterator());

Reference for eXtreme Scale queries
WebSphere eXtreme Scale has its own language by which the user can query data.

ObjectGrid query FROM clause

The FROM clause specifies the collections of objects to which to apply the query.
Each collection is identified either by an abstract schema name and an
identification variable, called a range variable, or by a collection member
declaration that identifies either a single or multi-valued relationship and an
identification variable.

Conceptually, the semantics of the query is to first form a temporary collection of
tuples, referred to as R. Tuples are composed of elements from the collections that
are identified in the FROM clause. Each tuple contains one element from each of
the collections in the FROM clause. All possible combinations are formed subject to
the constraints that are imposed by the collection member declarations. If any
schema name identifies a collection for which there are no records in the persistent
store, then the temporary collection R is empty.

Examples using FROM

Chapter 3. Accessing data in WebSphere eXtreme Scale 97

The DeptBean object contains records 10, 20 and 30. The EmpBean object contains
records 1, 2 and 3 that are related to department 10 and records 4 and 5 that are
related to department 20. Department 30 has no related employees.

FROM DeptBean d, EmpBean e

This clause forms a temporary collection R that contains 15 tuples.

FROM DeptBean d, DeptBean d1

This clause forms a temporary collection R that contains 9 tuples.

FROM DeptBean d, IN (d.emps) AS e

This clause forms a temporary collection R that contains 5 tuples. Department 30 is
not in the R temporary collection because it contains no employees. Department 10
is contained in the R temporary collection three times and department 20 is
contained in R twice.

Instead of using IN(d.emps) as e, you can use a JOIN predicate:

FROM DeptBean d JOIN d.emps as e

After forming the temporary collection, the search conditions of the WHERE clause
are applied to the R temporary collection, yielding a new temporary collection R1.
The ORDER BY and SELECT clauses are applied to R1 to yield the final result set.

An identification variable is a variable that is declared in the FROM clause using
the IN operator or the optional AS operator.

FROM DeptBean AS d, IN (d.emps) AS e

is equivalent to:

FROM DeptBean d, IN (d.emps) e

An identification variable that is declared to be an abstract schema name is called a
range variable. In the previous query, "d" is a range variable. An identification
variable that is declared to be a multi-valued path expression is called a collection
member declaration. The "d" and "e" values in the previous example are collection
member declarations.

An example of using a single-valued path expression in the FROM clause follows:

FROM EmpBean e, IN(e.dept.mgr) as m

ObjectGrid query SELECT clause

The syntax of the SELECT clause is illustrated in the following example:

SELECT { ALL | DISTINCT } [selection ,]* selection

selection ::= {single_valued_path_expression |
identification_variable |
OBJECT (identification_variable) |

aggregate_functions } [[AS] id]

98 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

The SELECT clause consists of one or more of the following elements: a single
identification variable that is defined in the FROM clause, a single-valued path
expression that evaluates to object references or values, and an aggregate function.
You can use the DISTINCT keyword to eliminate duplicate references.

A scalar-subselect is a subselect that returns a single value.

Examples using SELECT

Find all employees that earn more than the John employee:

SELECT OBJECT(e) FROM EmpBean ej, EmpBean eWHERE ej.name = ’John’ and
e.salary > ej.salary

Find all departments that have one or more employees who earn less than 20000:

SELECT DISTINCT e.dept FROM EmpBean e where e.salary < 20000

A query can have a path expression that evaluates to an arbitrary value:

SELECT e.dept.name FROM EmpBean e where e.salary < 20000

The previous query returns a collection of name values for the departments that
have employees who earn less than 20000.

A query can return an aggregate value:

SELECT avg(e.salary) FROM EmpBean e

A query that retrieves the names and object references for underpaid employees
follows:

SELECT e.name as name, object(e) as emp from EmpBean e where e.salary <
50000

ObjectGrid query WHERE clause

The WHERE clause contains search conditions that are composed of the elements
presented below. When a search condition evaluates to TRUE, the tuple is added to
the result set.

ObjectGrid query literals

A string literal is enclosed in single quotes. A single quotation mark that occurs
within a string literal is represented by two single quotes, for example: 'Tom''s'.

A numeric literal can be any of the following values:
v An exact value such as 57, -957, or +66
v Any value supported by Java long type
v A decimal literal such as 57.5 or -47.02
v An approximate numeric value such as 7E3 or -57.4E-2
v Float types must include the "F" qualifier, for example 1.0F
v Long types must include the "L" qualifier, for example 123L

Chapter 3. Accessing data in WebSphere eXtreme Scale 99

Boolean literals are TRUE and FALSE.

Temporal literals follow JDBC escape syntax based on the type of attribute:
v java.util.Date: yyyy-mm-ss
v java.sql.Date: yyyy-mm-ss
v java.sql.Time: hh-mm-ss
v java.sql.Timestamp: yyyy-mm-dd hh:mm:ss.f...
v java.util.Calendar: yyyy-mm-dd hh:mm:ss.f...

Enum literals are expressed using Java enum literal syntax using the fully qualified
enum class name.

ObjectGrid query input parameters

You can specify input parameters by either using an ordinal position or by using a
variable name. Writing queries that use input parameters is strongly encouraged,
because using input parameters increases performance by allowing the ObjectGrid
to catch the query plan between running actions.

An input parameter can be any of the following types: Byte, Short, Integer, Long,
Float, Double, BigDecimal, BigInteger, String, Boolean, Char, java.util.Date,
java.sql.Date, java.sql.Time, java.sql.Timestamp, java.util.Calendar, a Java SE 5
enum, an Entity or POJO Object, or a binary data string in the form of Java byte[].

An input parameter must not have a NULL value. To search for the occurrence of
a NULL value, use the NULL predicate.

Positional Parameters

Positional input parameters are defined by using question mark followed by a
positive number:

?[positive integer].

Positional input parameters are numbered starting at 1 and correspond to the
arguments of the query; therefore, a query must not contain an input parameter
that exceeds the number of input arguments.

Example: SELECT e FROM Employee e WHERE e.city = ?1 and e.salary >= ?2

Named Parameters

Named input parameters are defined using a variable name in the format:
:[parameter name].

Example: SELECT e FROM Employee e WHERE e.city = :city and e.salary >=
:salary

ObjectGrid query BETWEEN predicate

The BETWEEN predicate determines whether a given value lies between two other
given values.

expression [NOT] BETWEEN expression-2 AND expression-3

100 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

Example 1

e.salary BETWEEN 50000 AND 60000

is equivalent to:

e.salary >= 50000 AND e.salary <= 60000

Example 2

e.name NOT BETWEEN ’A’ AND ’B’

is equivalent to:

e.name < ’A’ OR e.name > ’B’

ObjectGrid query IN predicate

The IN predicate compares a value to a set of values. You can use the IN predicate
in one of two forms:

expression [NOT] IN (subselect)expression [NOT] IN (value1, value2,
....)

The ValueN value can either be a literal value or an input parameter. The
expression cannot evaluate to a reference type.

Example 1

e.salary IN (10000, 15000)

is equivalent to

(e.salary = 10000 OR e.salary = 15000)

Example 2

e.salary IN (select e1.salary from EmpBean e1 where e1.dept.deptno = 10)

is equivalent to

e.salary = ANY (select e1.salary from EmpBean e1 where e1.dept.deptno =
10)

Example 3

e.salary NOT IN (select e1.salary from EmpBean e1 where e1.dept.deptno =
10)

is equivalent to

e.salary <> ALL (select e1.salary from EmpBean e1 where e1.dept.deptno
= 10)

ObjectGrid query LIKE predicate

Chapter 3. Accessing data in WebSphere eXtreme Scale 101

The LIKE predicate searches a string value for a certain pattern.

string-expression [NOT] LIKE pattern [ESCAPE escape-character]

The pattern value is a string literal or parameter marker of type string in which the
underscore (_) stands for any single character and percent (%) stands for any
sequence of characters, including an empty sequence. Any other character stands
for itself. The escape character can be used to search for character _ and %. The
escape character can be specified as a string literal or as an input parameter.

If the string-expression is null, then the result is unknown.

If both string-expression and pattern are empty, then the result is true.

Example
’’ LIKE ’’ is true
’’ LIKE ’%’ is true
e.name LIKE ’12%3’ is true for ’123’ ’12993’ and false for ’1234’
e.name LIKE ’s_me’ is true for ’some’ and ’same’, false for ’soome’
e.name LIKE ’/_foo’ escape ’/’ is true for ’_foo’, false for ’afoo’
e.name LIKE ’//_foo’ escape ’/’ is true for ’/afoo’ and for ’/bfoo’
e.name LIKE ’///_foo’ escape ’/’ is true for ’/_foo’ but false for ’/afoo’

ObjectGrid query NULL predicate

The NULL predicate tests for null values.

{single-valued-path-expression | input_parameter} IS [NOT] NULL

Example
e.name IS NULL
e.dept.name IS NOT NULL
e.dept IS NOT NULL

ObjectGrid query EMPTY collection predicate

Use the EMPTY collection predicate to test for an empty collection.

To test if a multi-valued relationship is empty, use the following syntax:

collection-valued-path-expression IS [NOT] EMPTY

Example

Empty collection predicate To find all the departments that have no employees:

SELECT OBJECT(d) FROM DeptBean d WHERE d.emps IS EMPTY

ObjectGrid query MEMBER OF predicate

The following expression tests whether the object reference that is specified by the
single valued path expression or input parameter is a member of the designated
collection. If the collection valued path expression designates an empty collection,
then the value of the MEMBER OF expression is FALSE.

{ single-valued-path-expression | input_parameter } [NOT] MEMBER [OF]
collection-valued-path-expression

102 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

Example

Find employees that are not members of a given department number:
SELECT OBJECT(e) FROM EmpBean e , DeptBean d
WHERE e NOT MEMBER OF d.emps AND d.deptno = ?1

Find employees whose manager is a member of a given department number:
SELECT OBJECT(e) FROM EmpBean e, DeptBean d
WHERE e.dept.mgr MEMBER OF d.emps and d.deptno=?1

ObjectGrid query EXISTS predicate

The EXISTS predicate tests for the presence or absence of a condition that specified
by a subselect.

EXISTS (subselect)

The result of EXISTS is true if the subselect returns at least one value, otherwise
the result is false.

To negate an EXISTS predicate, precede the predicate with the NOT logical
operator.

Example

Return departments that have at least one employee that earns more than 1000000:
SELECT OBJECT(d) FROM DeptBean d
WHERE EXISTS (SELECT e FROM IN (d.emps) e WHERE e.salary > 1000000)

Return departments that have no employees:
SELECT OBJECT(d) FROM DeptBean d
WHERE NOT EXISTS (SELECT e FROM IN (d.emps) e)

You can also rewrite the previous query like in the following example:

SELECT OBJECT(d) FROM DeptBean d WHERE SIZE(d.emps)=0

ObjectGrid query ORDER BY clause

The ORDER BY clause specifies an ordering of the objects in the result collection.
An example follows:

ORDER BY [order_element ,]* order_element order_element ::={ path-expression }[
ASC | DESC]

The path expression must specify a single-valued field that is a primitive type of
byte, short, int, long, float, double, char, or a wrapper type of Byte, Short, Integer,
Long, Float, Double, BigDecimal, String, Character, java.util.Date, java.sql.Date,
java.sql.Time, java.sql.Timestamp and java.util.Calendar. The ASC order element
specifies that the results are displayed in ascending order, which is the default. A
DESC order element specifies that the results are displayed in descending order.

Example

Return department objects. Display the department numbers in decreasing order:

Chapter 3. Accessing data in WebSphere eXtreme Scale 103

SELECT OBJECT(d) FROM DeptBean d ORDER BY d.deptno DESC

Return employee objects, sorted by department number and name:
SELECT OBJECT(e) FROM EmpBean e ORDER BY e.dept.deptno ASC, e.name DESC

ObjectGrid query aggregation functions

Aggregation functions operate on a set of values to return a single scalar value.
You can use these functions in the select and subselect methods. The following
example illustrates an aggregation:

SELECT SUM (e.salary) FROM EmpBean e WHERE e.dept.deptno =20

This aggregation computes the total salary for department 20.

The aggregation functions are: AVG, COUNT, MAX, MIN, and SUM. The syntax of
an aggregation function is illustrated in the following example:

aggregation-function ([ALL | DISTINCT] expression)

or:

COUNT([ALL | DISTINCT] identification-variable)

The DISTINCT option eliminates duplicate values before applying the function.
The ALL option is the default option, and does not eliminate duplicate values.
Null values are ignored in computing the aggregate function except when you use
the COUNT(identification-variable) function, which returns a count of all the
elements in the set.

Defining return type

The MAX and MIN functions can apply to any numeric, string or date-time data
type and return the corresponding data type. The SUM and AVG functions take a
numeric type as input. The AVG function returns a double type. The SUM function
returns a long type if the input type is an integer type, except when the input is a
Java BigInteger type, then the function returns a Java BigInteger type. The SUM
function returns a double type if the input type is not an integer type, except when
the input is a Java BigDecimal type, then the function returns a Java BigDecimal
type. The COUNT function can take any data type except collections, and returns a
long type.

When applied to an empty set, the SUM, AVG, MAX, and MIN functions can
return a null value. The COUNT function returns zero (0) when it is applied to an
empty set.

Using GROUP BY and HAVING clauses

The set of values that is used for the aggregate function is determined by the
collection that results from the FROM and WHERE clause of the query. You can
divide the set into groups and apply the aggregation function to each group. To
perform this action, use a GROUP BY clause in the query. The GROUP BY clause
defines grouping members, which comprise a list of path expressions. Each path
expression specifies a field that is a primitive type of byte, short, int, long, float,
double, boolean, char, or a wrapper type of Byte, Short, Integer, Long, Float,

104 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

Double, BigDecimal, String, Boolean, Character, java.util.Date, java.sql.Date,
java.sql.Time, java.sql.Timestamp, java.util.Calendar or a Java SE 5 enum.

The following example illustrates the use of the GROUP BY clause in a query that
computes the average salary for each department:

SELECT e.dept.deptno, AVG (e.salary) FROM EmpBean e GROUP BY e.dept.deptno

In division of a set into groups, a NULL value is considered equal to another
NULL value.

Groups can be filtered using a HAVING clause that tests group properties before
involving aggregate functions or grouping members. This filtering is similar to
how the WHERE clause filters tuples (that is, records of the return collection
values) from the FROM clause. An example of the HAVING clause follows:
SELECT e.dept.deptno, AVG (e.salary) FROM EmpBean e
GROUP BY e.dept.deptno
HAVING COUNT(e) > 3 AND e.dept.deptno > 5

This query returns the average salary for departments that have more than three
employees and the department number is greater than five.

You can use a HAVING clause without a GROUP BY clause. In this case, the entire
set is treated as a single group, to which the HAVING clause is applied.

ObjectGrid query Backus-Naur Form
A summary of the ObjectGrid Query Backus-Naur Form (BNF) Notation follows.

Table 10. Key to BNF summary

Representation Description

{...} Grouping

[...] Optional constructs

bold Keywords

* Zero or more

| Alternates

ObjectGrid QL ::=select_clause from_clause [where_clause] [group_by_clause]
[having_clause] [order_by_clause]

from_clause ::=FROM identification_variable_declaration
[,identification_variable_declaration]*

identification_variable_declaration ::=collection_member_declaration |
range_variable_declaration

collection_member_declaration ::=IN (collection_valued_path_expression |
single_valued_navigation) [AS] identifier | [LEFT [OUTER]
| INNER] JOIN collection_valued_path_expression |
single_valued_navigation [AS] identifier

range_variable_declaration ::=abstract_schema_name [AS] identifier

single_valued_path_expression ::={single_valued_navigation | identification_variable}.
{ state_field | state_field.value_object_attribute } | single_valued_navigation

single_valued_navigation ::=identification_variable.[single_valued_association_field.]*
single_valued_association_field

collection_valued_path_expression ::=identification_variable.[
single_valued_association_field.]* collection_valued_association_field

select_clause ::= SELECT [DISTINCT] [selection ,]* selection

selection ::= {single_valued_path_expression |identification_variable | OBJECT
(identification_variable) |aggregate_functions } [[AS] id]

Chapter 3. Accessing data in WebSphere eXtreme Scale 105

order_by_clause ::= ORDER BY [{identification_variable.[single_valued_association_field.
]*state_field} [ASC|DESC],]* {identification_variable.[
single_valued_association_field.]*state_field}[ASC|DESC]

where_clause ::= WHERE conditional_expression

conditional_expression ::= conditional_term | conditional_expression OR conditional_term

conditional_term ::= conditional_factor | conditional_term AND conditional_factor

conditional_factor ::= [NOT] conditional_primary

conditional_primary ::= simple_cond_expression | (conditional_expression)

simple_cond_expression ::= comparison_expression | between_expression | like_expression |
in_expression | null_comparison_expression | empty_collection_comparison_expression |
exists_expression | collection_member_expression

between_expression ::= numeric_expression [NOT] BETWEEN numeric_expression
AND numeric_expression | string_expression [NOT] BETWEEN
string_expression AND string_expression | datetime_expression [NOT]
BETWEEN datetime_expression AND datetime_expression

in_expression ::= identification_variable.[single_valued_association_field.]state_field
[*NOT] IN { (subselect) | (atom ,]* atom) }

atom ::= { string_literal | numeric_literal | input_parameter }

like_expression ::=string_expression [NOT] LIKE {string_literal | input_parameter}
[ESCAPE {string_literal | input_parameter}]

null_comparison_expression ::= {single_valued_path_expression | input_parameter} IS
[NOT] NULL

empty_collection_comparison_expression ::= collection_valued_path_expression IS
[NOT] EMPTY

collection_member_expression ::={ ssingle_valued_path_expression | input_parameter }[
NOT] MEMBER [OF]collection_valued_path_expression

exists_expression ::= EXISTS {(subselect)}

subselect ::= SELECT [{ ALL | DISTINCT }] subselection from_clause
[where_clause] [group_by_clause] [having_clause]

subselection ::= {single_valued_path_expression |identification_variable |
aggregate_functions }

group_by_clause ::= GROUP BY[single_valued_path_expression,]*
single_valued_path_expression

having_clause ::= HAVING conditional_expression

comparison_expression ::= numeric_ expression comparison_operator { numeric_expression
| {SOME | ANY | ALL} (subselect) } | string_expression
comparison_operator {

string_expression | {SOME | ANY | ALL}(subselect) } |

datetime_expression comparison_operator {

datetime_expression {SOME | ANY | ALL}(subselect) } |

boolean_expression {=|<>} {

boolean_expression {SOME | ANY | ALL}(subselect) } |

entity_expression {=|<>} {

entity_expression {SOME| ANY | ALL}(subselect) }

comparison_operator ::= = | > | >= | < | <= | <>

string_expression ::= string_primary | (subselect)

string_primary ::=state_field_path_expression |string_literal | input_parameter |
functions_returning_strings

datetime_expression ::= datetime_primary |(subselect)

datetime_primary ::=state_field_path_expression | string_literal | long_literal
| input_parameter | functions_returning_datetime

boolean_expression ::= boolean_primary |(subselect)

boolean_primary ::=state_field_path_expression | boolean_literal | input_parameter

entity_expression ::=single_valued_association_path_expression |
identification_variable | input_parameter

numeric_expression ::= simple_numeric_expression |(subselect)

simple_numeric_expression ::= numeric_term | numeric_expression {+|-} numeric_term

numeric_term ::= numeric_factor | numeric_term {*|/} numeric_factor

numeric_factor ::= {+|-} numeric_primary

106 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

numeric_primary ::= single_valued_path_expression | numeric_literal |
(numeric_expression) | input_parameter | functions

aggregate_functions :=

AVG([ALL|DISTINCT] identification_variable.
[single_valued_association_field.]*state_field) |

COUNT([ALL|DISTINCT] {single_valued_path_expression |
identification_variable}) |

MAX([ALL|DISTINCT] identification_variable.[
single_valued_association_field.]*state_field) |

MIN([ALL|DISTINCT] identification_variable.[
single_valued_association_field.]*state_field) |

SUM([ALL|DISTINCT] identification_variable.[
single_valued_association_field.]*state_field)

functions ::=

ABS (simple_numeric_expression) |

CONCAT (string_primary , string_primary) |

LOWER (string_primary) |

LENGTH(string_primary) |

LOCATE(string_primary, string_primary [, simple_numeric_expression]) |

MOD (simple_numeric_expression, simple_numeric_expression) |

SIZE (collection_valued_path_expression) |

SQRT (simple_numeric_expression) |

SUBSTRING (string_primary, simple_numeric_expression[, simple_numeric_expression]) |

UPPER (string_primary) |

TRIM ([[LEADING | TRAILING | BOTH] [trim_character]
FROM] string_primary)

Query performance tuning
To tune the performance of your queries, use the following techniques and tips.

Using parameters

When a query runs, the query string must be parsed and a plan developed to run
the query, both of which can be costly.WebSphere eXtreme Scale caches query plans
by the query string. Since the cache is a finite size, it is important to reuse query
strings whenever possible. Using named or positional parameters also helps
performance by fostering query plan reuse.

Positional Parameter Example Query q = em.createQuery("select c from
Customer c where c.surname=?1"); q.setParameter(1, "Claus");

Using indexes

Proper indexing on a map might have a significant impact on query performance,
even though indexing has some overhead on overall map performance. Without
indexing on object attributes involved in queries, the query engine performs a table
scan for each attribute. The table scan is the most expensive operation during a
query run. Indexing on object attributes that are involved in queries allow the
query engine to avoid an unnecessary table scan, improving the overall query
performance. If the application is designed to use query intensively on a read-most
map, configure indexes for object attributes that are involved in the query. If the
map is mostly updated, then you must balance between query performance
improvement and indexing overhead on the map. See “Indexing” on page 118 for
more information.

When plain old Java objects (POJO) are stored in a map, proper indexing can avoid
a Java reflection. In the following example, query replaces the WHERE clause with

Chapter 3. Accessing data in WebSphere eXtreme Scale 107

range index search, if the budget field has an index built over it. Otherwise, query
scans the entire map and evaluates the WHERE clause by first getting the budget
using Java reflection and then comparing the budget with the value 50000:

SELECT d FROM DeptBean d WHERE d.budget=50000

See “Query plan” for details on how to best tune individual queries and how
different syntax, object models and indexes can affect query performance.

Using pagination

In client-server environments, the query engine transports the entire result map to
the client. The data that is returned should be divided into reasonable chunks. The
EntityManager Query and ObjectMap ObjectQuery interfaces both support the
setFirstResult and setMaxResults methods that allow the query to return a subset
of the results.

Return primitive values instead of entities

With the EntityManager Query API, entities are returned as query parameters. The
query engine currently returns the keys for these entities to the client. When the
client iterates over these entities using the Iterator from the getResultIterator
method, each entity is automatically inflated and managed as if it were created
with the find method on the EntityManager interface. The entire entity graph is
built from the entity ObjectMap on the client. The entity value attributes and any
related entities are eagerly resolved.

To avoid building the costly graph, modify the query to return the individual
attributes with path navigation.

For example:
// Returns an entity
SELECT p FROM Person p
// Returns attributes SELECT p.name, p.address.street, p.address.city, p.gender FROM Person p

Query plan
All eXtreme Scale queries have a query plan. The plan describes how the query
engine will interact with ObjectMaps and indexes. Display the query plan to
determine if the query string or indexes are being used appropriately. The query
plan can also be used to explore the differences that subtle changes in a query
string make in the way eXtreme Scale runs a query.

The query plan can be viewed one of two ways:
v EntityManager Query or ObjectQuery getPlan API methods
v ObjectGrid diagnostic trace

getPlan method

The getPlan method on the ObjectQuery and Query interfaces return a String
which describes the query plan. This string can be displayed to standard output or
a log to display a query plan. Note: In a distributed environment, the getPlan
method does not run against the server and will not reflect any defined indexes. To
view the plan, use an agent to view the plan on the server.

108 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

Query plan trace

The query plan can be displayed using ObjectGrid trace. To enable query plan
trace, use the following trace specification:

QueryEnginePlan=debug=enabled

See “Logs and trace” on page 271 for details on how to enable trace and locate the
trace log files.

Query plan examples

Query plan uses the word for to indicate that the query is iterating through an
ObjectMap collection or through a derived collection such as: q2.getEmps(), q2.dept
or a temporary collection returned by an inner loop. If the collection is from an
ObjectMap, the query plan shows whether a sequential scan (denoted by INDEX
SCAN), unique or non-unique index is used. Query plan uses a filter string to list
the condition expressions applied to a collection.

A Cartesian product is not commonly used in object query. The following query
scans the entire EmpBean map in the outer loop and scans the entire DeptBean
map in the inner loop:
SELECT e, d FROM EmpBean e, DeptBean d

Plan trace:

for q2 in EmpBean ObjectMap using INDEX SCAN
for q3 in DeptBean ObjectMap using INDEX SCAN

returning new Tuple(q2, q3)

The following query retrieves all employee names from a particular department by
sequentially scanning the EmpBean map to get an employee object. From the
employee object, the query navigates to its department object and applies the
d.no=1 filter. In this example, each employee has only one department object
reference, so the inner loop runs once:
SELECT e.name FROM EmpBean e JOIN e.dept d WHERE d.no=1

Plan trace:

for q2 in EmpBean ObjectMap using INDEX SCAN
for q3 in q2.dept
filter (q3.getNo() = 1)

returning new Tuple(q2.name)

The following query is equivalent to the previous query. However, the query below
performs better because it first narrows the result down to one department object
by using the unique index that is defined over the DeptBean primary key field
number. From the department object, the query navigates to its employee objects to
get their names:
SELECT e.name FROM DeptBean d JOIN d.emps e WHERE d.no=1

Plan trace:

for q2 in DeptBean ObjectMap using UNIQUE INDEX key=(1)
for q3 in q2.getEmps()

returning new Tuple(q3.name)

Chapter 3. Accessing data in WebSphere eXtreme Scale 109

The following query finds all the employees that work for development or sales.
The query scans the entire EmpBean map and performs additional filtering by
evaluating the expressions: d.name = 'Sales' or d.name='Dev'
SELECT e FROM EmpBean e, in (e.dept) d WHERE d.name = ’Sales’
or d.name=’Dev’

Plan trace:

for q2 in EmpBean ObjectMap using INDEX SCAN
for q3 in q2.dept
filter ((q3.getName() = Sales) OR (q3.getName() = Dev))

returning new Tuple(q2)

The following query is equivalent to the previous query, but this query runs a
different query plan and uses the range index built over the field name. In general,
this query performs better because the index over the name field is used for
narrowing down the department objects, which run quickly if only a few
departments are development or sales.
SELECT e FROM DeptBean d, in(d.emps) e WHERE d.name=’Dev’ or d.name=’Sales’

Plan trace:

IteratorUnionIndex of

for q2 in DeptBean ObjectMap using INDEX on name = (Dev)
for q3 in q2.getEmps()

for q2 in DeptBean ObjectMap using INDEX on name = (Sales)
for q3 in q2.getEmps()

The following query finds departments that do not have any employees:
SELECT d FROM DeptBean d WHERE NOT EXISTS(select e from d.emps e)

Plan trace:

for q2 in DeptBean ObjectMap using INDEX SCAN
filter (NOT EXISTS (correlated collection defined as

for q3 in q2.getEmps()
returning new Tuple(q3)

returning new Tuple(q2)

The following query is equivalent to the previous query but uses the SIZE scalar
function. This query has similar performance but is easier to write.
SELECT d FROM DeptBean d WHERE SIZE(d.emps)=0
for q2 in DeptBean ObjectMap using INDEX SCAN

filter (SIZE(q2.getEmps()) = 0)
returning new Tuple(q2)

The following example is another way of writing the same query as the previous
query with similar performance, but this query is easier to write as well:
SELECT d FROM DeptBean d WHERE d.emps is EMPTY

Plan trace:

for q2 in DeptBean ObjectMap using INDEX SCAN
filter (q2.getEmps() IS EMPTY)
returning new Tuple(q2)

110 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

The following query finds any employees with a home address matching at least
one of the addresses of the employee whose name equals the value of the
parameter. The inner loop has no dependency on the outer loop. The query runs
the inner loop once.
SELECT e FROM EmpBean e WHERE e.home = any (SELECT e1.home FROM EmpBean e1
WHERE e1.name=?1)
for q2 in EmpBean ObjectMap using INDEX SCAN

filter (q2.home =ANY temp collection defined as

for q3 in EmpBean ObjectMap using INDEX on name = (?1)
returning new Tuple(q3.home)

)
returning new Tuple(q2)

The following query is equivalent to the previous query, but has a correlated
subquery; also, the inner loop runs repeatedly.
SELECT e FROM EmpBean e WHERE EXISTS(SELECT e1 FROM EmpBean e1 WHERE
e.home=e1.home and e1.name=?1)

Plan trace:

for q2 in EmpBean ObjectMap using INDEX SCAN
filter (EXISTS (correlated collection defined as

for q3 in EmpBean ObjectMap using INDEX on name = (?1)
filter (q2.home = q3.home)
returning new Tuple(q3)

returning new Tuple(q2)

Query optimization using indexes
Defining and using indexes properly can significantly improve query performance.

WebSphere eXtreme Scale queries can use built-in HashIndex plug-ins to improve
performance of queries. Indexes can be defined on entity or object attributes. The
query engine will automatically use the defined indexes if its WHERE clause uses
one of the following strings:
v A comparison expression with the following operators: =, <, >, <= or >= (any

comparison expressions except not equals <>)
v A BETWEEN expression
v Operands of the expressions are constants or simple terms

Requirements

Indexes have the following requirements when used by Query:
v All indexes must use the built-in HashIndex plug-in.
v All indexes must be statically defined. Dynamic indexes are not supported.
v The @Index annotation may be used to automatically create static HashIndex

plug-ins.
v All single-attribute indexes must have the RangeIndex property set to true.
v All composite indexes must have the RangeIndex property set to false.
v All association (relationship) indexes must have the RangeIndex property set to

false.

For a more efficient way to search for cached objects, see “Composite HashIndex”
on page 123

Chapter 3. Accessing data in WebSphere eXtreme Scale 111

Using hints to choose an index

An index can be manually selected using the setHint method on the Query and
ObjectQuery interfaces with the HINT_USEINDEX constant. This can be helpful
when optimizing a query to use the best performing index.

Query examples that use attribute indexes

The following examples use simple terms: e.empid, e.name, e.salary, d.name,
d.budget and e.isManager. The examples assume that indexes are defined over the
name, salary and budget fields of an entity or value object. The empid field is a
primary key and isManager has no index defined.

The following query uses both indexes over the fields of name and salary. It
returns all employees with names that equal the value of the first parameter or a
salary equal to the value of the second parameter:

SELECT e FROM EmpBean e where e.name=?1 or e.salary=?2

The following query uses both indexes over the fields of name and budget. The
query returns all departments named 'DEV' with a budget that is greater than
2000.

SELECT d FROM DeptBean dwhere d.name=’DEV’ and d.budget>2000

The following query returns all employees with a salary greater than 3000 and
with an isManager flag value that equals the value of the parameter. The query
uses the index that is defined over the salary field and performs additional
filtering by evaluating the comparison expression: e.isManager=?1.

SELECT e FROM EmpBean e where e.salary>3000 and e.isManager=?1

The following query finds all employees who earn more than the first parameter,
or any employee that is a manager. Although the salary field has an index defined,
query scans the built-in index that is built over the primary keys of the EmpBean
field and evaluates the expression: e.salary>?1 or e.isManager=TRUE.

SELECT e FROM EmpBean e WHERE e.salary>?1 or e.isManager=TRUE

The following query returns employees with a name that contains the letter a.
Although the name field has an index defined, query does not use the index
because the name field is used in the LIKE expression.

SELECT e FROM EmpBean e WHERE e.name LIKE ’%a%’

The following query finds all employees with a name that is not "Smith". Although
the name field has an index defined, query does not use the index because the
query uses the not equals (<>) comparison operator.

SELECT e FROM EmpBean e where e.name<>’Smith’

The following query finds all departments with a budget less than the value of the
parameter, and with an employee salary greater than 3000. The query uses an
index for the salary, but it does not use an index for the budget because
dept.budget is not a simple term. The dept objects are derived from collection e.
You do not need to use the budget index to look for dept objects.

112 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

SELECT dept from EmpBean e, in (e.dept) dept where e.salary>3000 and
dept.budget<?

The following query finds all employees with a salary greater than the salary of
the employees that have the empid of 1, 2, and 3. The index salary is not used
because the comparison involves a subquery. The empid is a primary key, however,
and is used for a unique index search because all the primary keys have a built-in
index defined.

SELECT e FROM EmpBean e WHERE e.salary > ALL (SELECT e1.salary FROM
EmpBean e1 WHERE e1.empid=1 or e1.empid =2 or e1.empid=99)

To check if the index is being used by the query, you can view the “Query plan”
on page 108. Here is an example query plan for the previous query:
for q2 in EmpBean ObjectMap using INDEX SCAN

filter (q2.salary >ALL temp collection defined as
IteratorUnionIndex of

for q3 in EmpBean ObjectMap using UNIQUE INDEX key=(1)
)

for q3 in EmpBean ObjectMap using UNIQUE INDEX key=(2)
)

for q3 in EmpBean ObjectMap using UNIQUE INDEX key=(99)
)
returning new Tuple(q3.salary)

returning new Tuple(q2)

for q2 in EmpBean ObjectMap using RANGE INDEX on salary with range(3000,)
for q3 in q2.dept
filter (q3.budget < ?1)

returning new Tuple(q3)

Indexing attributes

Indexes can be defined over any single attribute type with the constraints
previously defined.

Defining entity indexes using @Index

To define an index on an entity, simply define an annotation:
Entities using annotations

@Entity
public class Employee {
@Id int empid;
@Index String name
@Index double salary
@ManyToOne Department dept;

}
@Entity

public class Department {
@Id int deptid;
@Index String name;
@Index double budget;
boolean isManager;
@OneToMany Collection<Employee> employees;
}

With XML

Chapter 3. Accessing data in WebSphere eXtreme Scale 113

Indexes can also be defined using XML:
Entities without annotations

public class Employee {
int empid;
String name
double salary
Department dept;
}

public class Department {
int deptid;
String name;
double budget;
boolean isManager;
Collection employees;
}

ObjectGrid XML with attribute indexes

<?xml version="1.0" encoding="UTF-8"?>
<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">
<objectGrids>
<objectGrid name="DepartmentGrid" entityMetadataXMLFile="entity.xml>
<backingMap name="Employee" pluginCollectionRef="Emp"/>
<backingMap name="Department" pluginCollectionRef="Dept"/>
</objectGrid>
</objectGrids>
<backingMapPluginCollections>
<backingMapPluginCollection id="Emp">
<bean id="MapIndexPlugin" className="com.ibm.websphere.objectgrid.plugins.index.HashIndex">
<property name="Name" type="java.lang.String" value="Employee.name"/>
<property name="AttributeName" type="java.lang.String" value="name"/>
<property name="RangeIndex" type="boolean" value="true"
description="Ranges are must be set to true for attributes." />
</bean>
<bean id="MapIndexPlugin" className="com.ibm.websphere.objectgrid.plugins.index.HashIndex">
<property name="Name" type="java.lang.String" value="Employee.salary"/>
<property name="AttributeName" type="java.lang.String" value="salary"/>
<property name="RangeIndex" type="boolean" value="true"
description="Ranges are must be set to true for attributes." />
</bean>
</backingMapPluginCollection>
<backingMapPluginCollection id="Dept">
<bean id="MapIndexPlugin" className="com.ibm.websphere.objectgrid.plugins.index.HashIndex">
<property name="Name" type="java.lang.String" value="Department.name"/>
<property name="AttributeName" type="java.lang.String" value="name"/>
<property name="RangeIndex" type="boolean" value="true"
description="Ranges are must be set to true for attributes." />
</bean>
<bean id="MapIndexPlugin" className="com.ibm.websphere.objectgrid.plugins.index.HashIndex">
<property name="Name" type="java.lang.String" value="Department.budget"/>
<property name="AttributeName" type="java.lang.String" value="budget"/>
<property name="RangeIndex" type="boolean" value="true"
description="Ranges are must be set to true for attributes." />
</bean>
</backingMapPluginCollection>
</backingMapPluginCollections>
</objectGridConfig>

Entity XML

<?xml version="1.0" encoding="UTF-8"?>
<entity-mappings xmlns="http://ibm.com/ws/projector/config/emd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/projector/config/emd ./emd.xsd">

<description>Department entities</description>
<entity class-name="acme.Employee" name="Employee" access="FIELD">
<attributes>
<id name="empid" />
<basic name="name" />
<basic name="salary" />
<many-to-one name="department"
target-entity="acme.Department"
fetch="EAGER">
<cascade><cascade-persist/></cascade>
</many-to-one>
</attributes>
</entity>
<entity class-name="acme.Department" name="Department" access="FIELD">
<attributes>
<id name="deptid" />

114 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

<basic name="name" />
<basic name="budget" />
<basic name="isManager" />
<one-to-many name="employees"
target-entity="acme.Employee"
fetch="LAZY" mapped-by="parentNode">
<cascade><cascade-persist/></cascade>
</one-to-many>
</attributes>
</entity>
</entity-mappings>

Defining indexes for non-entities using XML

Indexes for non-entity types are defined in XML. There is no difference when
creating the MapIndexPlugin for entity maps and non-entity maps.
Java bean
public class Employee {

int empid;
String name
double salary
Department dept;

public class Department {
int deptid;
String name;
double budget;
boolean isManager;
Collection employees;
}

ObjectGrid XML with attribute indexes

<?xml version="1.0" encoding="UTF-8"?>
<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">
<objectGrids>
<objectGrid name="DepartmentGrid">
<backingMap name="Employee" pluginCollectionRef="Emp"/>
<backingMap name="Department" pluginCollectionRef="Dept"/>
<querySchema>
<mapSchemas>
<mapSchema mapName="Employee" valueClass="acme.Employee"
primaryKeyField="empid" />
<mapSchema mapName="Department" valueClass="acme.Department"
primaryKeyField="deptid" />
</mapSchemas>
<relationships>
<relationship source="acme.Employee"
target="acme.Department"
relationField="dept" invRelationField="employees" />
</relationships>
</querySchema>
</objectGrid>
</objectGrids>
<backingMapPluginCollections>
<backingMapPluginCollection id="Emp">
<bean id="MapIndexPlugin" className="com.ibm.websphere.objectgrid.plugins.index.HashIndex">
<property name="Name" type="java.lang.String" value="Employee.name"/>
<property name="AttributeName" type="java.lang.String" value="name"/>
<property name="RangeIndex" type="boolean" value="true"
description="Ranges are must be set to true for attributes." />
</bean>
<bean id="MapIndexPlugin" className="com.ibm.websphere.objectgrid.plugins.index.HashIndex">
<property name="Name" type="java.lang.String" value="Employee.salary"/>
<property name="AttributeName" type="java.lang.String" value="salary"/>
<property name="RangeIndex" type="boolean" value="true"
description="Ranges are must be set to true for attributes." />
</bean>
</backingMapPluginCollection>
<backingMapPluginCollection id="Dept">
<bean id="MapIndexPlugin" className="com.ibm.websphere.objectgrid.plugins.index.HashIndex">
<property name="Name" type="java.lang.String" value="Department.name"/>
<property name="AttributeName" type="java.lang.String" value="name"/>
<property name="RangeIndex" type="boolean" value="true"
description="Ranges are must be set to true for attributes." />
</bean>
<bean id="MapIndexPlugin" className="com.ibm.websphere.objectgrid.plugins.index.HashIndex">
<property name="Name" type="java.lang.String" value="Department.budget"/>
<property name="AttributeName" type="java.lang.String" value="budget"/>
<property name="RangeIndex" type="boolean" value="true"
description="Ranges are must be set to true for attributes." />

Chapter 3. Accessing data in WebSphere eXtreme Scale 115

</bean>
</backingMapPluginCollection>
</backingMapPluginCollections>
</objectGridConfig>

Indexing relationships

WebSphere eXtreme Scale stores the foreign keys for related entities within the
parent object. For entities, the keys are stored in the underlying tuple. For
non-entity objects, the keys are explicitly stored in the parent object.

Adding an index on a relationship attribute can speed up queries that use cyclical
references or use the IS NULL, IS EMPTY, SIZE and MEMBER OF query filters.
Both single- and multi-valued associations may have the @Index annotation or a
HashIndex plug-in configuration in an ObjectGrid descriptor XML file.

Defining entity relationship indexes using @Index

The following example defines entities with @Index annotations:
Entity with annotation

@Entity
public class Node {

@ManyToOne @Index
Node parentNode;

@OneToMany @Index
List<Node> childrenNodes = new ArrayList();

@OneToMany @Index
List<BusinessUnitType> businessUnitTypes = new ArrayList();

}

Defining entity relationship indexes using XML

The following example defines the same entities and indexes using XML with
HashIndex plug-ins:

Entity without annotations

public class Node {
int nodeId;
Node parentNode;
List<Node> childrenNodes = new ArrayList();
List<BusinessUnitType> businessUnitTypes = new ArrayList();
}

ObjectGrid XML

<?xml version="1.0" encoding="UTF-8"?>
<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">
<objectGrids>
<objectGrid name="ObjectGrid_Entity" entityMetadataXMLFile="entity.xml>
<backingMap name="Node" pluginCollectionRef="Node"/>
<backingMap name="BusinessUnitType" pluginCollectionRef="BusinessUnitType"/>
</objectGrid>
</objectGrids>
<backingMapPluginCollections>
<backingMapPluginCollection id="Node">
<bean id="MapIndexPlugin" className="com.ibm.websphere.objectgrid.plugins.index.HashIndex">
<property name="Name" type="java.lang.String" value="parentNode"/>
<property name="AttributeName" type="java.lang.String" value="parentNode"/>

<property name="RangeIndex" type="boolean" value="false"
description="Ranges are not supported for association indexes." /> </bean>
<bean id="MapIndexPlugin" className="com.ibm.websphere.objectgrid.plugins.index.HashIndex">
<property name="Name" type="java.lang.String" value="businessUnitType"/>
<property name="AttributeName" type="java.lang.String" value="businessUnitTypes"/>

<property name="RangeIndex" type="boolean" value="false"

116 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

description="Ranges are not supported for association indexes." />
</bean>
<bean id="MapIndexPlugin" className="com.ibm.websphere.objectgrid.plugins.index.HashIndex">
<property name="Name" type="java.lang.String" value="childrenNodes"/>
<property name="AttributeName" type="java.lang.String" value="childrenNodes"/>

<property name="RangeIndex" type="boolean" value="false"
description="Ranges are not supported for association indexes." />
</bean>
</backingMapPluginCollection>
</backingMapPluginCollections>
</objectGridConfig>

Entity XML

<?xml version="1.0" encoding="UTF-8"?>
<entity-mappings xmlns="http://ibm.com/ws/projector/config/emd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/projector/config/emd ./emd.xsd">

<description>My entities</description>
<entity class-name="acme.Node" name="Account" access="FIELD">
<attributes>
<id name="nodeId" />
<one-to-many name="childrenNodes"
target-entity="acme.Node"
fetch="EAGER" mapped-by="parentNode">
<cascade><cascade-all/></cascade>
</one-to-many>
<many-to-one name="parentNodes"
target-entity="acme.Node"
fetch="LAZY" mapped-by="childrenNodes">
<cascade><cascade-none/></cascade>
</one-to-many>
<many-to-one name="businessUnitTypes"
target-entity="acme.BusinessUnitType"
fetch="EAGER">
<cascade><cascade-persist/></cascade>
</many-to-one>

</attributes>
</entity>
<entity class-name="acme.BusinessUnitType" name="BusinessUnitType" access="FIELD">
<attributes>
<id name="buId" />
<basic name="TypeDescription" />
</attributes>
</entity>
</entity-mappings>

Using the previously defined indexes, the following entity query examples are
optimized:
SELECT n FROM Node n WHERE n.parentNode is null
SELECT n FROM Node n WHERE n.businessUnitTypes is EMPTY

SELECT n FROM Node n WHERE size(n.businessUnitTypes)>=10
SELECT n FROM BusinessUnitType b, Node n WHERE b member of n.businessUnitTypes and b.name=’TELECOM’

Defining non-entity relationship indexes

The following example defines a HashIndex plug-in for non-entity maps in an
ObjectGrid descriptor XML file:
<?xml version="1.0" encoding="UTF-8"?>
<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">
<objectGrids>

<objectGrid name="ObjectGrid_POJO">
<backingMap name="Node" pluginCollectionRef="Node"/>
<backingMap name="BusinessUnitType" pluginCollectionRef="BusinessUnitType"/>
<querySchema>

<mapSchemas>
<mapSchema mapName="Node"

valueClass="com.ibm.websphere.objectgrid.samples.entity.Node"
primaryKeyField="id" />

<mapSchema mapName="BusinessUnitType"
valueClass="com.ibm.websphere.objectgrid.samples.entity.BusinessUnitType"
primaryKeyField="id" />

</mapSchemas>
<relationships>

<relationship source="com.ibm.websphere.objectgrid.samples.entity.Node"
target="com.ibm.websphere.objectgrid.samples.entity.Node"
relationField="parentNodeId" invRelationField="childrenNodeIds" />

<relationship source="com.ibm.websphere.objectgrid.samples.entity.Node"
target="com.ibm.websphere.objectgrid.samples.entity.BusinessUnitType"
relationField="businessUnitTypeKeys" invRelationField="" />

</relationships>
</querySchema>

Chapter 3. Accessing data in WebSphere eXtreme Scale 117

</objectGrid>
</objectGrids>
<backingMapPluginCollections>

<backingMapPluginCollection id="Node">
<bean id="MapIndexPlugin" className="com.ibm.websphere.objectgrid.plugins.index.HashIndex">

<property name="Name" type="java.lang.String" value="parentNode"/>
<property name="Name" type="java.lang.String" value="parentNodeId"/>
<property name="AttributeName" type="java.lang.String" value="parentNodeId"/>
<property name="RangeIndex" type="boolean" value="false"

description="Ranges are not supported for association indexes." />
</bean>
<bean id="MapIndexPlugin" className="com.ibm.websphere.objectgrid.plugins.index.HashIndex">

<property name="Name" type="java.lang.String" value="businessUnitType"/>
<property name="AttributeName" type="java.lang.String" value="businessUnitTypeKeys"/>

<property name="RangeIndex" type="boolean" value="false"
description="Ranges are not supported for association indexes." />
</bean>

<bean id="MapIndexPlugin" className="com.ibm.websphere.objectgrid.plugins.index.HashIndex">
<property name="Name" type="java.lang.String" value="childrenNodeIds"/>

<property name="AttributeName" type="java.lang.String" value="childrenNodeIds"/>
<property name="RangeIndex" type="boolean" value="false"

description="Ranges are not supported for association indexes." />
</bean>

</backingMapPluginCollection>
</backingMapPluginCollections>

</objectGridConfig>

Given the above index configurations, the following object query examples are
optimized:
SELECT n FROM Node n WHERE n.parentNodeId is null
SELECT n FROM Node n WHERE n.businessUnitTypeKeys is EMPTY
SELECT n FROM Node n WHERE size(n.businessUnitTypeKeys)>=10
SELECT n FROM BusinessUnitType b, Node n WHERE
b member of n.businessUnitTypeKeys and b.name=’TELECOM’

Indexing
Use the MapIndexPlugin to build an index or several indexes on a BackingMap to
support non-key data access.

Index types and configuration

The indexing feature is represented by the MapIndexPlugin or Index for short. The
Index is a BackingMap plug-in. A BackingMap can have multiple Index plug-ins
configured, as long as each one follows the Index configuration rules.

You can use the indexing feature to build an index or several indexes on a
BackingMap. An index is built from an attribute or a list of attributes of an object
in the BackingMap. This feature provides a way for applications to find certain
objects more quickly. With the indexing feature, applications can find objects with a
specific value or within a range of values of indexed attributes.

Two types of indexing are possible: static and dynamic. With static indexing, you
must configure the index plug-in on the BackingMap before initializing the
ObjectGrid instance. You can do this configuration with XML or programmatic
configuration of the BackingMap. Static indexing starts building an index during
ObjectGrid initialization. The index is always synchronized with the BackingMap
and ready for use. After the static indexing process starts, the maintenance of the
index is part of the eXtreme Scale transaction management process. When
transactions commit changes, these changes also update the static index, and index
changes are rolled back if the transaction is rolled back.

With dynamic indexing, you can create an index on a BackingMap before or after
the initialization of the containing ObjectGrid instance. Applications have life cycle
control over the dynamic indexing process so that you can remove a dynamic
index when it is no longer needed. When an application creates a dynamic index,

118 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

the index might not be ready for immediate use because of the time it takes to
complete the index building process. Because the amount of time depends upon
the amount of data indexed, the DynamicIndexCallback interface is provided for
applications that want to receive notifications when certain indexing events occur.
These events include ready, error, and destroy. Applications can implement this
callback interface and register with the dynamic indexing process.

If a BackingMap has an index plug-in configured, you can obtain the application
index proxy object from the corresponding ObjectMap. Calling the getIndex
method on the ObjectMap and passing in the name of the index plug-in returns
the index proxy object. You must cast the index proxy object to an appropriate
application index interface, such as MapIndex, MapRangeIndex, or a customized
index interface. After obtaining the index proxy object, you can use methods
defined in the application index interface to find cached objects.

The steps to use indexing are summarized in the following list:
v Add either static or dynamic index plug-ins into the BackingMap.
v Obtain an application index proxy object by issuing the getIndex method of the

ObjectMap.
v Cast the index proxy object to an appropriate application index interface, such as

MapIndex, MapRangeIndex, or a customized index interface.
v Use methods that are defined in application index interface to find cached

objects.

For more information about writing your own index plug-in, see the information
about writing an index plug-in in the Programming Guide..

For information about how to use indexing, see the information about using
indexing for non-key data access in the Programming Guide and “Composite
HashIndex” on page 123.

Data quality consideration

The results of index query methods only represent a snapshot of data at a point of
time. No locks against data entries are obtained after the results return to the
application. Application has to be aware that data updates may occur on a
returned data set. For example, the application obtains the key of a cached object
by running the findAll method of MapIndex. This returned key object is associated
with a data entry in the cache. The application should be able to run the get
method on ObjectMap to find an object by providing the key object. If another
transaction removes the data object from the cache just before the get method is
called, the returned result will be null.

Indexing performance considerations

One of the main objectives of the indexing feature is to improve overall
BackingMap performance. If indexing is not used properly, the performance of the
application might be compromised. Consider the following factors before using
this feature.
v The number of concurrent write transactions: Index processing can occur every

time a transaction writes data into a BackingMap. Performance degrades if many
transactions are writing data into the map concurrently when an application
attempts index query operations.

Chapter 3. Accessing data in WebSphere eXtreme Scale 119

v The size of the result set that is returned by a query operation: As the size of
the resultset increases, the query performance declines. Performance tends to
degrade when the size of the result set is 15% or more of the BackingMap.

v The number of indexes built over the same BackingMap: Each index consumes
system resources. As the number of the indexes built over the BackingMap
increases, performance decreases.

The indexing function can improve BackingMap performance drastically. Ideal
cases are when the BackingMap has mostly read operations, the query result set is
of a small percentage of the BackingMap entries, and only few indexes are built
over the BackingMap.

Using indexing for non-key data access
Using indexing as an alternative to key access for data can be more efficient.

Necessary steps
1. Add either static or dynamic index plug-ins to the BackingMap.
2. Obtain application index proxy object by issuing the getIndex method of

ObjectMap.
3. Cast the index proxy object to an appropriate application index interface, such

as MapIndex, MapRangeIndex, or a customized index interface.
4. Use the methods defined in the application index interface to find cached

objects.

The HashIndex class is the index plug-in implementation that can support both of
the built-in application index interfaces: MapIndex and MapRangeIndex. You can
also create your own indexes.

Note: In a distributed environment, if the index object is obtained from a client
ObjectGrid, it will have type client index object and all index operations will run in
a remote server ObjectGrid. If the map is partitioned, the index operation will run
on each partition remotely and results from each partition will be merged before
returning them to the application. The performance will be determined by the
number of partitions and the size of the result returned by each partition. Poor
performance may occur if both factors are high.

If you want to write your own index plug-in, see “Writing an index plug-in” on
page 146.

For information regarding indexing, see “Indexing” on page 118 and “Composite
HashIndex” on page 123.

Adding static index plug-ins

You can use two approaches to add static index plug-ins into the BackingMap
configuration: XML configuration and programmatic configuration. The following
example illustrates the XML configuration approach.

Adding static index plug-ins: XML configuration approach
<backingMapPluginCollection id="person">

<bean id="MapIndexplugin"
className="com.ibm.websphere.objectgrid.plugins.index.HashIndex">

<property name="Name" type="java.lang.String" value="CODE"
description="index name" />

<property name="RangeIndex" type="boolean" value="true"
description="true for MapRangeIndex" />

120 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

<property name="AttributeName" type="java.lang.String" value="employeeCode"
description="attribute name" />
</bean>

</backingMapPluginCollection>

In this XML configuration example, the built-in HashIndex class is used as the
index plug-in. The HashIndex supports properties that users can configure, such as
Name, RangeIndex, and AttributeName in the previous example.
v The Name property is configured as “CODE”, a string identifying this index

plug-in. The Name property value must be unique within the scope of the
BackingMap, and can be used to retrieve the index object by name from the
ObjectMap instance for the BackingMap.

v The RangeIndex property is configured as “true”, which means the application
can cast the retrieved index object to the MapRangeIndex interface. If the
RangeIndex property is configured as “false”, the application can only cast the
retrieved index object to the MapIndex interface. A MapRangeIndex supports
functions to find data using range functions such as greater than, less than, or
both, while a MapIndex only supports equals functions. If the index will be used
by query, the RangeIndex property must be configured to “true” on
single-attribute indexes. For a relationship index and composite index, the
RangeIndex property must be configured to “false”.

v The AttributeName property is configured as “employeeCode”, which means the
employeeCode attribute of the cached object is used to build a single-attribute
index. If an application needs to search for cached objects with multiple
attributes, the AttributeName property can be set to a comma-delimited list of
attributes, yielding a composite index.

See the information about configuring HashIndex in the Administration Guide for
more information.

The BackingMap interface has two methods that you can use to add static index
plug-ins: addMapIndexplugin and setMapIndexplugins. For more information, see
the API documentation.

The following code example illustrates the programmatic configuration approach:

Adding static index plugins: programmatic configuration approach
import com.ibm.websphere.objectgrid.ObjectGridManagerFactory;
import com.ibm.websphere.objectgrid.ObjectGridManager;
import com.ibm.websphere.objectgrid.ObjectGrid;
import com.ibm.websphere.objectgrid.BackingMap;

ObjectGridManager ogManager = ObjectGridManagerFactory.getObjectGridManager();
ObjectGrid ivObjectGrid = ogManager.createObjectGrid("grid");
BackingMap personBackingMap = ivObjectGrid.getMap("person");

// use the builtin HashIndex class as the index plugin class.
HashIndex mapIndexplugin = new HashIndex();
mapIndexplugin.setName("CODE");
mapIndexplugin.setAttributeName("EmployeeCode");
mapIndexplugin.setRangeIndex(true);
personBackingMap.addMapIndexplugin(mapIndexplugin);

Using static indexes

After a static index plug-in is added to a BackingMap configuration and the
containing ObjectGrid instance is initialized, applications can retrieve the index
object by name from the ObjectMap instance for the BackingMap. Cast the index
object to the application index interface. Operations that the application index
interface supports can now run.

The following code example illustrates how to retrieve and use static indexes.

Chapter 3. Accessing data in WebSphere eXtreme Scale 121

Using static indexes example

Session session = ivObjectGrid.getSession();
ObjectMap map = session.getMap("person ");
MapRangeIndex codeIndex = (MapRangeIndex) m.getIndex("CODE");
Iterator iter = codeIndex.findLessEqual(new Integer(15));
while (iter.hasNext()) {

Object key = iter.next();
Object value = map.get(key);

}

Adding, removing, and using dynamic indexes

You can create and remove dynamic indexes from a BackingMap instance
programmatically at any time. A dynamic index differs from a static index in that
the dynamic index can be created even after the containing ObjectGrid instance is
initialized. Unlike static indexing, the dynamic indexing is an asynchronous
process and needs to be in ready state before you use it. This method uses the
same approach for retrieving and using the dynamic indexes as static indexes. You
can remove a dynamic index if it is no longer needed. The BackingMap interface
has methods to create and remove dynamic indexes.

See the BackingMap API for more information about the createDynamicIndex and
removeDynamicIndex methods.

Using dynamic indexes example
import com.ibm.websphere.objectgrid.ObjectGridManagerFactory;
import com.ibm.websphere.objectgrid.ObjectGridManager;
import com.ibm.websphere.objectgrid.ObjectGrid;
import com.ibm.websphere.objectgrid.BackingMap;

ObjectGridManager ogManager = ObjectGridManagerFactory.getObjectGridManager();
ObjectGrid og = ogManager.createObjectGrid("grid");
BackingMap bm = og.getMap("person");
og.initialize();

// create index after ObjectGrid initialization without DynamicIndexCallback.
bm.createDynamicIndex("CODE", true, "employeeCode", null);

try {
// If not using DynamicIndexCallback, need to wait for the Index to be ready.
// The waiting time depends on the current size of the map
Thread.sleep(3000);

} catch (Throwable t) {
// ...

}

// When the index is ready, applications can try to get application index
// interface instance.
// Applications have to find a way to ensure that the index is ready to use,
// if not using DynamicIndexCallback interface.
// The following example demonstrates the way to wait for the index to be ready
// Consider the size of the map in the total waiting time.

Session session = og.getSession();
ObjectMap m = session.getMap("person");
MapRangeIndex codeIndex = null;

int counter = 0;
int maxCounter = 10;
boolean ready = false;
while (!ready && counter < maxCounter) {

try {
counter++;
codeIndex = (MapRangeIndex) m.getIndex("CODE");
ready = true;

} catch (IndexNotReadyException e) {
// implies index is not ready, ...
System.out.println("Index is not ready. continue to wait.");
try {

Thread.sleep(3000);
} catch (Throwable tt) {

// ...
}

} catch (Throwable t) {
// unexpected exception
t.printStackTrace();

}
}

if (!ready) {
System.out.println("Index is not ready. Need to handle this situation.");

}

// Use the index to peform queries
// Refer to the MapIndex or MapRangeIndex interface for supported operations.

122 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

// The object attribute on which the index is created is the EmployeeCode.
// Assume that the EmployeeCode attribute is Integer type: the
// parameter that is passed into index operations has this data type.

Iterator iter = codeIndex.findLessEqual(new Integer(15));

// remove the dynamic index when no longer needed

bm.removeDynamicIndex("CODE");

DynamicIndexCallback interface

The DynamicIndexCallback interface is designed for applications that want to get
notifications at the indexing events of ready, error, or destroy. The
DynamicIndexCallback is an optional parameter for the createDynamicIndex
method of the BackingMap. With a registered DynamicIndexCallback instance,
applications can run business logic upon receiving notification of an indexing
event. For example, the ready event means that the index is ready for use. When a
notification for this event is received, an application can try to retrieve and use the
application index interface instance. See the DynamicIndexCallback API in the API
documentation for more information.

The following code example illustrates the use of the DynamicIndexCallback
interface:

Using DynamicIndexCallback interface
BackingMap personBackingMap = ivObjectGrid.getMap("person");

DynamicIndexCallback callback = new DynamicIndexCallbackImpl();
personBackingMap.createDynamicIndex("CODE", true, "employeeCode", callback);

class DynamicIndexCallbackImpl implements DynamicIndexCallback {
public DynamicIndexCallbackImpl() {
}

public void ready(String indexName) {
System.out.println("DynamicIndexCallbackImpl.ready() -> indexName = " + indexName);

// Simulate what an application would do when notified that the index is ready.
// Normally, the application would wait until the ready state is reached and then proceed
// with any index usage logic.
if("CODE".equals(indexName)) {

ObjectGridManager ogManager = ObjectGridManagerFactory.getObjectGridManager();
ObjectGrid og = ogManager.createObjectGrid("grid");
Session session = og.getSession();
ObjectMap map = session.getMap("person");
MapIndex codeIndex = (MapIndex) map.getIndex("CODE");
Iterator iter = codeIndex.findAll(codeValue);

}
}

public void error(String indexName, Throwable t) {
System.out.println("DynamicIndexCallbackImpl.error() -> indexName = " + indexName);
t.printStackTrace();

}

public void destroy(String indexName) {
System.out.println("DynamicIndexCallbackImpl.destroy() -> indexName = " + indexName);

}
}

Composite HashIndex
The composite HashIndex improves query performance and avoids expensive map
scanning. The feature also provides a convenient way for the HashIndex API to
find cached objects when search criteria involve many attributes.

Improved performance

A composite HashIndex provides a fast and convenient way to search for cached
objects with multiple attributes in match-searching criteria. The composite index
supports full attribute-match searches, but does not support range searches.

Chapter 3. Accessing data in WebSphere eXtreme Scale 123

Note: Composite indexes do not support the BETWEEN operator in the ObjectGrid
query language because BETWEEN would require range support. The greater than
(>) and less than (<) conditionals also do not work because they require range
indexes.

A composite index can improve performance of queries if the appropriate
composite index is available for the WHERE condition. This means that the
composite index has exactly the same attributes as involved in the WHERE
condition with full attributes matched.

A query might have many attributes involved in a condition as in the following
example.

SELECT a FROM Address a WHERE a.city=’Rochester’ AND a.state=’MN’ AND
a.zipcode=’55901’

Composite index can improve query performance by avoiding scanning map or
joining multiple single-attribute index results. In the example, if a composite index
is defined with attributes (city,state,zipcode), the query engine can use the
composite index to find the entry with city='Rochester', state='MN', and
zipcode='55901'. Without composite index and attribute index on city, state, and
zipcode attributes, the query engine will have to scan the map or join multiple
single-attribute searches, which usually have expensive overhead. Also, querying
for the composite index only supports a full-matched pattern.

Configuring a composite index

You can configure composite indexing in three ways: using XML,
programmatically, and (for entity maps only) with entity annotations.

Using XML

In order to configure a composite index with XML, include code such as below in
the configuration file's backingMapPluginCollections element.
Composite index - XML configuration approach
<bean id="MapIndexPlugin" className="com.ibm.websphere.objectgrid.plugins.index.HashIndex">
<property name="Name" type="java.lang.String" value="Address.CityStateZip"/>
<property name="AttributeName" type="java.lang.String" value="city,state,zipcode"/>
</bean>

Programmatic configuration

The programmatic example code below will create the same composite index as
the preceding XML.

HashIndex mapIndex = new HashIndex();
mapIndex.setName("Address.CityStateZip");
mapIndex.setAttributeName(("city,state,zipcode"));
mapIndex.setRangeIndex(true);

BackingMap bm = objectGrid.defineMap("mymap");
bm.addMapIndexPlugin(mapIndex);

Note that configuring a composite index is the same as configuring a regular index
with XML except for the attributeName property value. In a composite index case,
the value of attributeName is a comma-delimited list of attributes. For example,
the value class Address has 3 attributes: city, state, and zipcode. A composite index
can be defined with the attributeName property value as "city,state,zipcode"
indicating that city, state, and zipcode are included in the composite index.

124 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

Also, note that the composite HashIndexes do not support range lookups and
therefore cannot have the RangeIndex property set to true.

With entity annotations

In the entity map case, annotation approach can be used to define a composite
index. You can define a list of CompositeIndex within CompositeIndexes
annotation on the entity class level. The CompositeIndex has a name and
attributeNames property. Each CompositeIndex is associated with a HashIndex
instance applied to the entity's associated BackingMap. The HashIndex is
configured as a non-range index.
@Entity
@CompositeIndexes({

@CompositeIndex(name="CityStateZip", attributeNames="city,state,zipcode"),
@CompositeIndex(name="lastnameBirthday", attributeNames="lastname,birthday")

})
public class Address {

@Id int id;
String street;
String city;
String state;
String zipcode;
String lastname;
Date birthday;

}

The name property for each composite index must be unique within the entity and
BackingMap. If the name is not specified, a generated name will be used. The
attributeNames property is used to populate the HashIndex attributeName with
the comma-delimited list of attributes. The attribute names coincide with the
persistent field names when the entities are configured to use field-access, or the
property name as defined for the JavaBeans naming conventions for
property-access entities. For example: If the attribute name is "street", the property
getter method is named getStreet.

Performing composite index lookups

After a composite index is configured, an application can use the findAll(Object)
method of the MapIndex interface to perform lookups, as below.
Session sess = objectgrid.getSession();
ObjectMap map = sess.getMap("MAP_NAME");
MapIndex codeIndex = (MapIndex) map.getIndex("INDEX_NAME");
Object[] compositeValue = new Object[]{ MapIndex.EMPTY_VALUE,

"MN", "55901"};
Iterator iter = mapIndex.findAll(compositeValue);

The MapIndex.EMPTY_VALUE is assigned to the compositeValue[0] which
indicates that the city attribute is excluded from evaluation. Only objects with state
attribute equal to "MN" and zipcode attribute equal to "55901" will be included in
the result.

The following queries benefit from the previous composite index configuration:

SELECT a FROM Address a WHERE a.city=’Rochester’ AND a.state=’MN’ AND
a.zipcode=’55901’

SELECT a FROM Address a WHERE a.state=’MN’ AND a.zipcode=’55901’

The query engine will find the appropriate composite index and use it to improve
query performance in full attribute-match cases.

Chapter 3. Accessing data in WebSphere eXtreme Scale 125

In some scenarios, the application might need to define multiple composite indexes
with overlapped attributes in order to satisfy all queries with full attributes
matched. A disadvantage of increasing the number of indexes is the possible
performance overhead on map operations.

Migration and interoperability

The only constraint for the use of a composite index is that an application cannot
configure it in a distributed environment with heterogeneous containers. Old and
new containers cannot be mixed, since older containers will not recognize a
composite index configuration. The composite index is just like the existing regular
attribute index, except that the former allows indexing over multiple attributes.
When using only the regular attribute index, a mixed-container environment is still
viable.

Data Grid API
The DataGrid API provides a simple programming interface to run business logic
over all or a subset of the ObjectGrid in parallel with where the data is located.

DataGrid APIs and partitioning
With the DataGrid APIs, a client can send requests to one partition, a subset of
partitions, or all the partitions in a data grid. The client can specify a list of keys,
and WebSphere eXtreme Scale determines the set of partitions that are hosting the
keys. The request is then sent to all the partitions in the set in parallel and the
client waits for the results. The client can also send requests without specifying
keys, therefore, requests are sent to all partitions.

Agents that are deployed to the data grid do not work in client mode. These
agents work directly against the primary shard. Working directly against the
primary shard results in maximum performance, allowing tens of thousands or
more transactions per second because the agent works with the data at full
memory speeds. Working directly with the primary shard also means that an agent
can only see data that is within that shard. This provides some interesting
opportunities that cannot be done on a client.

A typical eXtreme Scale client must be able determine the partition from the
transaction, because the client needs to route the request. If an agent is directly
attached to a shard, then no routing is needed. All requests go against that shard.
Because the agent is directly attached to a shard, data in other maps in the shard
can be accessed without worrying about common partitioning keys, and so on,
because no routing occurs.

DataGrid agents and entity-based Maps
A map contains key objects and value objects. The key object is a generated tuple
as is the value. An agent is normally provided with the application specified key
objects.

The key object is a generated tuple as is the value. An agent is normally provided
with the application specified key objects. This will be the key objects used by the
application or Tuples if it is an entity Map. An application using Entities will not
want to deal with Tuples directly and would prefer to work with the Java objects
mapped to the Entity.

126 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

Therefore, an Agent class can implement the EntityAgentMixin interface. This
forces the class to implement one more method, getClassForEntity(). This returns
the entity class to use with the agent on the server side. The keys are converted to
this Entity before invoking the process and reduce methods.

This is a different semantic to an non EntityAgentMixin agent where those
methods are provided with just the keys. An agent implementing
EntityAgentMixin receives the Entity object which includes keys and values in one
object.

Note: If the entity does not exist on the server, the keys are the raw Tuple format
of the key instead of the managed entity.

DataGrid API example
The DataGrid APIs support two common grid programming patterns: parallel map
and parallel reduce.

Parallel Map

The parallel map allows the entries for a set of keys to be processed and returns a
result for each entry processed. The application makes a list of keys and receives a
Map of key/result pairs after invoking a Map operation. The result is the result of
applying a function to the entry of each key. The function is supplied by the
application.

MapGridAgent call flow

When the AgentManager.callMapAgent method is invoked with a collection of
keys, the MapGridAgent instance is serialized and sent to each primary partition
that the keys resolve to. This means that any instance data stored in the agent can
be sent to the server. Each primary partition therefore has one instance of the
agent. The process method is invoked for each instance one time for each key that
resolves to the partition. The result of each process method is then serialized back
to the client and returned to the caller in a Map instance, where the result is
represented as the value in the map.

When the AgentManager.callMapAgent method is invoked without a collection of
keys, the MapGridAgent instance is serialized and sent to every primary partition.
This means that any instance data stored in the agent can be sent to the server.
Each primary partition therefore has one instance (partition) of the agent. The
processAllEntries method is invoked for each partition. The result of each
processAllEntries method is then serialized back to the client and returned to the
caller in a Map instance. The following example assumes there is a Person entity
with the following shape:
import com.ibm.websphere.projector.annotations.Entity;
import com.ibm.websphere.projector.annotations.Id;
@Entity
public class Person
{

@Id String ssn;
String firstName;
String surname;
int age;

}

Chapter 3. Accessing data in WebSphere eXtreme Scale 127

The application supplied function is written as a class implementing the
MapAgentGrid interface. Following is an example agent showing a function to
return the age of a Person multiplied by two.
public class DoublePersonAgeAgent implements MapGridAgent, EntityAgentMixin
{

private static final long serialVersionUID = -2006093916067992974L;

int lowAge;
int highAge;

public Object process(Session s, ObjectMap map, Object key)
{

Person p = (Person)key;
return new Integer(p.age * 2);

}

public Map processAllEntries(Session s, ObjectMap map)
{

EntityManager em = s.getEntityManager();
Query q = em.createQuery("select p from Person p where p.age > ?1 and p.age < ?2");
q.setParameter(1, lowAge);
q.setParameter(2, highAge);
Iterator iter = q.getResultIterator();
Map<Person, Interger> rc = new HashMap<Person, Integer>();
while(iter.hasNext())
{
Person p = (Person)iter.next();
rc.put(p, (Integer)process(s, map, p));
}
return rc;
}
public Class getClassForEntity()
{
return Person.class;
}
}

This shows the Map agent for doubling a Person. Lets look at the process methods
first. The first process method is supplied with the Person to work with. It simply
returns double the age of that entry. The second process method is called for each
partition and finds all Person objects with an age between lowAge and highAge
and returns their ages doubled.
Session s = grid.getSession();
ObjectMap map = s.getMap("Person");
AgentManager amgr = map.getAgentManager();

DoublePersonAgeAgent agent = new DoublePersonAgeAgent();

// make a list of keys
ArrayList<Person> keyList = new ArrayList<Person>();
Person p = new Person();
p.ssn = "1";
keyList.add(p);
p = new Person ();
p.ssn = "2";
keyList.add(p);

// get the results for those entries
Map<Tuple, Object> = amgr.callMapAgent(agent, keyList);

This shows a client obtaining a Session and a reference to the Person Map. The
agent operation is performed against a specific Map. The AgentManager interface
is retrieved from that Map. An instance of the agent to invoke is created and any
necessary state is added to the object by setting attributes, there are none in this
case. A list of keys are then constructed. A Map with the values for person 1
doubled, and the same values for person 2 are returned.

The agent is then invoked for that set of keys. The agents process method is
invoked on each partition with some of the specified keys in the grid in parallel. A

128 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

Map is returned providing the merged results for the specified key. In this case, a
Map with the values holding the age for person 1 doubled and the same for
person 2 will be returned.

If the key does not exist, the agent will still be invoked. This gives the agent the
opportunity to create the map entry. If using an EntityAgentMixin, the key to
process will not be the entity, but will instead be the actual Tuple key value for the
entity. If the keys are unknown then it's possible to ask all partitions to find Person
objects of a certain shape and return their ages doubled. Here is an example:
Session s = grid.getSession();

ObjectMap map = s.getMap("Person");
AgentManager amgr = map.getAgentManager();

DoublePersonAgeAgent agent = new DoublePersonAgeAgent();
agent.lowAge = 20;
agent.highAge = 9999;

Map m = amgr.callMapAgent(agent);

The previous example shows the AgentManager being obtained for the Person
Map, and the agent constructed and initialized with the low and high ages for
Persons of interest. The agent is then invoked using the callMapAgent method.
Notice, no keys are supplied. This causes the ObjectGrid to invoke the agent on
every partition in the grid in parallel and then return the merged results to the
client. This will find all Person objects in the grid with an age between low and
high and calculate the age of those Person objects doubled. This shows how the
grid apis can be used to run a query to find entities matching a certain query. The
agent is simply serialized and transported by the ObjectGrid to the partitions with
the needed entries. The results are similarly serialized for transport back to the
client. Care needs to be taken with the Map APIs. If the ObjectGrid was hosting
tera bytes of objects and running on a lot of servers then potentially this would
overwhelm anything but the largest machines running the client. This should be
used to processing a small subset. If a large subset needs processing then we
recommend using a reduce agent to do the processing out in the grid rather than
on a client.

Parallel Reduction or aggregation agents

This style of programming processes a subset of the entries and calculates a single
result for the group of entries. Examples of such a result would be:
v minimum value
v maximum value
v some other business specific function

A reduce agent is coded and invoked in a very similar manner to the Map agents.

ReduceGridAgent call flow

When the AgentManager.callReduceAgent method is invoked with a collection of
keys, the ReduceGridAgent instance is serialized and sent to each primary
partition that the keys resolve to. This means that any instance data stored in the
agent can be sent to the server. Each primary partition therefore has one instance
of the agent. The reduce(Session s, ObjectMap map, Collection keys) method is
invoked once per instance (partition) with the subset of keys that resolves to the
partition. The result of each reduce method is then serialized back to the client.
The reduceResults method is invoked on the client ReduceGridAgent instance with

Chapter 3. Accessing data in WebSphere eXtreme Scale 129

the collection of each result from each remote reduce invocation. The result from
the reduceResults method is returned to the caller of the callReduceAgent method.

When the AgentManager.callReduceAgent method is invoked without a collection
of keys, the ReduceGridAgentinstance is serialized and sent to each primary
partition. This means that any instance data stored in the agent can be sent to the
server. Each primary partition therefore has one instance of the agent. The
reduce(Session s, ObjectMap map) method is invoked once per instance (partition).
The result of each reduce method is then serialized back to the client. The
reduceResults method is invoked on the client ReduceGridAgent instance with the
collection of each result from each remote reduce invocation. The result from the
reduceResults method is returned to the caller of the callReduceAgent method.
Here is an example of a reduce agent that simply adds the ages of the matching
entries.
public class SumAgeReduceAgent implements ReduceGridAgent, EntityAgentMixin
{

private static final long serialVersionUID = 2521080771723284899L;

int lowAge;
int highAge;

public Object reduce(Session s, ObjectMap map, Collection keyList)
{

Iterator<Person> iter = keyList.iterator();
int sum = 0;
while (iter.hasNext())
{
Person p = iter.next();
sume += p.age;
}
return new Integer(sum);
}

public Object reduce(Session s, ObjectMap map)
{
EntityManager em = s.getEntityManager ();
Query q = em.createQuery("select p from Person p where p.age > ?1 and p.age < ?2");
q.setParameter(1, lowAge);
q.setParameter(2, highAge);
Iterator<Person> iter = q.getResultIterator();
int sum = 0;
while(iter.hasNext())
{
sum += iter.next().age;
}
return new Integer(sum);
}

public Class getClassForEntity()
{
return Person.class;
}
}

The previous example shows the agent. The agent has three important parts. The
first allows a specific set of entries to be processed without a query. It simply
interates over the set of entries adding the ages. The sum is returned from the
method. The second uses a query to select the entries to be aggregated. It then
sums all the matching Person ages. The third method is used to aggregate the
results from each partition to a single result. The ObjectGrid performs the entry
aggregation in parallel across the grid. Each partition produces an intermediate
result that must be aggregated with other partition intermediate results. This third
method performs that task. In the following example the agent is invoked, and the
ages of all Persons with ages between 10 and 20 exclusively are aggregrated:
Session s = grid.getSession();

ObjectMap map = s.getMap("Person");
AgentManager amgr = map.getAgentManager();

SumAgeReduceAgent agent = new SumAgeReduceAgent();

Person p = new Person();
p.ssn = "1";

130 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

ArrayList<Person> list = new ArrayList<Person>();
list.add(p);
p = new Person ();
p.ssn = "2";
list.add(p);
Integer v = (Integer)amgr.callReduceAgent(agent, list);

Agent functions

The agent is free to do ObjectMap or EntityManager operations within the local
shard where it is running. The agent receives a Session and can add, update, query,
read, or remove data from the partition the Session represents. Some applications
will only query data from the grid, but you can also write an agent to increment
all the Person ages by 1 that match a certain query. There is a transaction on the
Session when the agent is called, and is committed when the agent returns unless
an exception is thrown

Error handling

If a map agent is invoked with an unknown key then the value that is returned is
an error object implementing the EntryErrorValue interface.

Transactions

A map agent runs in a separate transaction from the client. Agent invocations may
be grouped into a single transaction. If an agent fails (throws an exception), the
transaction is rolled-back. Any agents that ran successfully in a transaction will
rollback with the failed agent. The AgentManager will rerun the rolled-back agents
that ran successfully in a new transaction.

For more information, consult the DataGrid API documentation.

API Documentation
The WebSphere eXtreme Scale API contains information you can use to look up a
package or class name to find details about systems or application programming
interfaces.

See the WebSphere eXtreme Scale Information Center for the API documentation.

Chapter 3. Accessing data in WebSphere eXtreme Scale 131

http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r0/index.jsp

132 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

Chapter 4. System APIs and plug-ins

A plug-in is a component that provides a function to the pluggable components,
which include ObjectGrid and BackingMap. To most effectively use eXtreme Scale
as an in-memory data grid or database processing space, you should carefully
determine how best you can maximize performance with available plug-ins.

Introduction to plug-ins
A WebSphere eXtreme Scale plug-in is a component that provides a certain type of
function to the pluggable components that include ObjectGrid and BackingMap.
WebSphere eXtreme Scale provides several plug points to allow applications and
cache providers to integrate with various data stores, alternative client APIs and to
improve overall performance of the cache. The product ships with several default,
prebuilt plug-ins, but you can also build custom plug-ins with the application.

All plug-ins are concrete classes that implement one or more eXtreme Scale plug-in
interfaces. These classes are then instantiated and invoked by the ObjectGrid at
appropriate times. The ObjectGrid and BackingMaps each allow custom plug-ins to
be registered.

ObjectGrid plug-ins

The following plug-ins are available for an ObjectGrid instance:
v TransactionCallback: A TransactionCallback plug-in provides transaction life

cycle events.
v ObjectGridEventListener: An ObjectGridEventListener plug-in provides

ObjectGrid life cycle events for the ObjectGrid, shards, and transactions.
v SubjectSource, ObjectGridAuthorization, SubjectValidation: eXtreme Scale

provides several security endpoints to allow custom authentication mechanisms
to be integrated with eXtreme Scale.

Common ObjectGrid plug-in requirements

The ObjectGrid instantiates and initializes plug-in instances using JavaBeans
conventions. All of the previous plug-in implementations have the following
requirements:
v The plug-in class must be a top-level public class.
v The plug-in class must provide a public, no-argument constructor.
v The plug-in class must be available in the class path for both servers and clients

(as appropriate).
v Attributes must be set using the JavaBeans style property methods.
v Plug-ins, unless specifically noted, are registered before ObjectGrid initializes

and cannot be changed after the ObjectGrid is initialized.

BackingMap plug-ins

The following plug-ins are available for a BackingMap:
v Evictor: An evictor plug-in is a default mechanism is provided for evicting cache

entries and a plug-in for creating custom evictors.

© Copyright IBM Corp. 2009, 2011 133

v Loader: A Loader plug-in on an ObjectGrid map acts as a memory cache for
data that is typically kept in a persistent store on either the same system or
some other system.

v ObjectTransformer: An ObjectTransformer plug-in allows you to serialize,
deserialize, and copy objects in the cache.

v OptimisticCallback: An OptimisticCallback plug-in allows you to customize
versioning and comparison operations of cache objects when you are using the
optimistic lock strategy.

v MapEventListener: A MapEventListener plug-in provides callback notifications
and significant cache state changes that occur for a BackingMap.

v Indexing: Use the indexing feature, which is represented by the
MapIndexplug-in plug-in, to build an index or several indexes on a BackingMap
map to support non-key data access.

Plug-in life cycles

Most plug-ins have both initialize and destroy methods or equivalent methods, in
addition to the methods for which they were designed to operate. These
specialized methods of each plug-in are available to be invoked at designated
functional points. Both initialize and destroy methods define the life cycle of
plug-ins, which are controlled by their "owner" objects. An owner object is the
object that actually uses the given plug-in. An owner can be a grid client, server, or
a backing map.

When owner objects are initializing, they will invoke the initialize method of their
owned plug-ins. During the destroy cycle of owner objects, the destroy method of
plug-ins will be consequently invoked also. For details on the specifics of initialize
and destroy methods, along with other methods capable with each plug-in, refer to
the topics relevant to each plug-in.

As an example, consider a distributed environment. Both the client-side
ObjectGrids and the server-side ObjectGrids can have their own plug-ins. The life
cycle of a client-side ObjectGrid and, therefore, its plug-in instances are
independent from all server-side ObjectGrid and plug-in instances.

In such a distributed topology, say you have an ObjectGrid named "myGrid"
defined in the objectGrid.xml file and configured with a customized
ObjectGridEventListener named myObjectGridEventListener. The
objectGridDeployment.xml file defines the deployment policy for the myGrid
ObjectGrid. Both objectGrid.xml and objectGridDeployment.xml are used to start
container servers. During the startup of the container server, the server side
myGrid ObjectGrid instance will be initialized and the initialize method of the
myObjectGridEventListener instance owned by the myObjectGrid instance will be
invoked. After the container server is started, your application can connect to the
server-side myGrid ObjectGrid instance and obtain a client-side instance.

When obtaining the client-side myGrid ObjectGrid instance, the client-side myGrid
instance will go through its own initialization cycle and invoke the initialize
method of its own client-side myObjectGridEventListener instance. This client side
myObjectGridEventListener instance is independent from the server-side
myObjectGridEventListener instance. Its life cycle is controlled by its owner, which
is the client-side myGrid ObjectGrid instance.

If your application disconnects or destroys the client-side myGrid ObjectGrid
instance, the destroy method of the owned client-side myObjectGridEventListener

134 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

instance will be invoked automatically. However, this has no impact on server-side
myObjectGridEventListener instance. The destroy method of the server-side
myObjectGridEventListener instance will only be invoked during the destroy cycle
of the server-side myGrid ObjectGrid instance when stopping a container server.
That is, when stopping a container server, the contained ObjectGrid instances will
be destroyed and the destroy method of all their owned plug-ins will be invoked.

Although the previous example applies specifically to the case of a client and a
server instance of an ObjectGrid, the owner of a plug-in can also be a BackingMap
and you must be careful to determine your configurations for plug-ins that you
may write based on these life cycle considerations.

Event listeners
You can use the ObjectGridEventListener and MapEventListener plug-ins to
configure notifications for various events in the eXtreme Scale cache. Listener
plug-ins are registered with an ObjectGrid or BackingMap instance like other
eXtreme Scale plug-ins and add integration and customization points for
applications and cache providers.

ObjectGridEventListener plug-in

An ObjectGridEventListener plug-in provides eXtreme Scale life cycle events for
the ObjectGrid instance, shards, and transactions. Use the ObjectGridEventListener
plug-in to receive notifications when significant events occur on an ObjectGrid.
These events include ObjectGrid initialization, the beginning of a transaction, the
ending a transaction, and destroying an ObjectGrid. To listen for these events,
create a class that implements the ObjectGridEventListener interface and add it to
the eXtreme Scale.

For more information about writing an ObjectGridEventListener plug-in, see
“ObjectGridEventListener plug-in” on page 137. You can also refer to the API
documentation for more information.

Adding and removing ObjectGridEventListener instances

An ObjectGrid can have multiple ObjectGridEventListener listeners. Add and
remove the listeners using the addEventListener, setEventListeners and
removeEventListener methods on the ObjectGrid interface. You can also
declaratively registerObjectGridEventListener plug-ins with the ObjectGrid
descriptor file. For examples, see “ObjectGridEventListener plug-in” on page 137.

MapEventListener plug-in

A MapEventListener plug-in provides callback notifications and significant cache
state changes that occur for a BackingMap instance. For details on writing a
MapEventListener plug-in, see “MapEventListener plug-in” on page 136. You can
also refer to the API documentation for more information.

Adding and removing MapEventListener instances

An eXtreme Scale can have multiple MapEventListener listeners. Add and remove
listeners with the addMapEventListener, setMapEventListeners and
removeMapEventListener methods on the BackingMap interface. You can also
declaratively register MapEventListener listeners with the ObjectGrid descriptor
file. For examples, see “MapEventListener plug-in” on page 136.

Chapter 4. System APIs and plug-ins 135

MapEventListener plug-in
A MapEventListener plug-in provides callback notifications and significant cache
state changes that occur for a BackingMap object: when a map has finished
pre-loading or when an entry is evicted from the map. A particular
MapEventListener plug-in is a custom class you write implementing the
MapEventListener interface.

MapEventListener plug-in conventions

When you develop a MapEventListener plug-in, you must follow common plug-in
conventions. For more information about plug-in conventions, see “Introduction to
plug-ins” on page 133. For other types of listener plug-ins, see “Event listeners” on
page 135.

After you write a MapEventListener implementation, you can plug it in to the
BackingMap configuration programmatically or with an XML configuration.

Write a MapEventListener implementation

Your application can include an implementation of the MapEventListener plug-in.
The plug-in must implement the MapEventListener interface to receive significant
events about a map. Events are sent to the MapEventListener plug-in when an
entry is evicted from the map and when the preload of a map completes.

Plug in a MapEventListener implementation using XML

A MapEventListner implementation can be configured using XML. The following
XML must be in the myGrid.xml file:
<?xml version="1.0" encoding="UTF-8" ?>
<objectGridconfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/config../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">

<objectGrids>
<objectGrid name="myGrid">

<backingMap name="myMap" pluginCollectionRef="myPlugins" />
</objectGrid>

</objectGrids>
<backingMapPluginCollections>

<backingMapPluginCollection id="myPlugins">
<bean id="MapEventListener" className=

"com.company.org.MyMapEventListener" />
</backingMapPluginCollection>

</backingMapPluginCollections>
</objectGridConfig>

Providing this file to the ObjectGridManager instance facilitates the creation of this
configuration. The following code snippet shows how to create an ObjectGrid
instance using this XML file. The newly created ObjectGrid instance has a
MapEventListener set on the myMap BackingMap.
ObjectGridManager objectGridManager =
ObjectGridManagerFactory.getObjectGridManager();
ObjectGrid myGrid =
objectGridManager.createObjectGrid("myGrid", new URL("file:etc/test/myGrid.xml"),
true, false);

Programmatically plug in a MapEventListener implementation

The class name for the custom MapEventListener is the
com.company.org.MyMapEventListener class. This class implements the

136 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

MapEventListener interface. The following code snippet creates the custom
MapEventListener object and adds it to a BackingMap object:
ObjectGridManager objectGridManager =
ObjectGridManagerFactory.getObjectGridManager();
ObjectGrid myGrid = objectGridManager.createObjectGrid("myGrid", false);
BackingMap myMap = myGrid.defineMap("myMap");
MyMapEventListener myListener = new MyMapEventListener();
myMap.addMapEventListener(myListener);

ObjectGridEventListener plug-in
An ObjectGridEventListener plug-in provides WebSphere eXtreme Scale life cycle
events for the ObjectGrid, shards and transactions. An ObjectGridEventListener
plug-in provides notifications when an ObjectGrid is initialized or destroyed, and
when a transaction is started or ended. ObjectGridEventListener plug-ins are
custom classes you write implementing the ObjectGridEventListener interface.
Optionally, the implementation includes ObjectGridEventGroup sub-interfaces and
follow the common eXtreme Scale plug-in conventions.

Overview

An ObjectGridEventListener plug-in is useful when a Loader plug-in is available,
and you must initialize Java Database Connectivity (JDBC) connections or
connections to a back end when transactions start and end. Typically, an
ObjectGridEventListener plug-in and a Loader plug-in are written together.

Writing an ObjectGridEventListener plug-in

An ObjectGridEventListener plug-in must implement the ObjectGridEventListener
interface to receive notifications about significant eXtreme Scale events. To receive
additional event notifications, you can implement the following interfaces. These
sub-interfaces are included in the ObjectGridEventGroup interface:
v ShardEvents interface
v ShardLifecycle interface
v TransactionEvents interface

For more information about these interfaces, see the API documentation.

Shard events

When the catalog service places partition primary or replica shards in a Java
virtual machine (JVM), a new ObjectGrid instance is created in that JVM to host
that shard. Some applications that need to start threads on the JVM host the
primary need notification of these events. The ObjectGridEventGroup.ShardEvents
interface declares the shardActivate and shardDeactivate methods. These methods
are called only when a shard is activated as a primary and when the shard is
deactivated from a primary. These two events allow the application to start
additional threads when the shard is a primary and stop the threads when the
shard returns to being a replica or is taken out of service.

An application can determine which partition has been activated by looking up a
specific BackingMap in the ObjectGrid reference that is provided to the
shardActivate method using the ObjectGrid#getMap method. The application can
then see the partition number using the BackingMap#getPartitionId() method. The
partitions are numbered from 0 to the number of partitions in the deployment
descriptor minus one.

Chapter 4. System APIs and plug-ins 137

Shard life-cycle events

ObjectGridEventListener.initialize and ObjectGridEventListener.destroy method
events are delivered using the ObjectGridEventGroup.ShardLifecycle interface.

Transaction events

ObjectGridEventListener.transactionBegin and
ObjectGridEventListener.transactionEnd methods are delivered through the
ObjectGridEventGroup.TransactionEvents interface.

Advantages of this approach

If an ObjectGridEventListener plug-in implements the ObjectGridEventListener and
ShardLifecycle interfaces, then shard life-cycle events are the only events that are
delivered to the listener. After you implement any of the new
ObjectGridEventGroup inner interfaces, eXtreme Scale only delivers those specific
events by the new interfaces. With this implementation, code can be backwards
compatible. If you are using the new inner interfaces, it can now receive just the
specific events that are needed.

Using the ObjectGridEventListener plug-in

To use a custom ObjectGridEventListener plug-in, first create a class that
implements the ObjectGridEventListener interface and any optional
ObjectGridEventGroup sub-interfaces. Add the custom listener to an ObjectGrid to
receive notification of significant events. You have two approaches to add an
ObjectGridEventListener plug-in into the eXtreme Scale configuration:
programmatic configuration and XML configuration.

Configure an ObjectGridEventListener plug-in programmatically

Assume that the class name of the eXtreme Scale event listener is the
com.company.org.MyObjectGridEventListener class. This class implements the
ObjectGridEventListener interface. The following code snippet creates the custom
ObjectGridEventListener and adds it to an ObjectGrid.
ObjectGridManager objectGridManager = ObjectGridManagerFactory.getObjectGridManager();
ObjectGrid myGrid = objectGridManager.createObjectGrid("myGrid", false);
MyObjectGridEventListener myListener = new MyObjectGridEventListener();
myGrid.addEventListener(myListener);

Configure an ObjectGridEventListener plug-in with XML

You can also configure an ObjectGridEventListener plug-in using XML. The
following XML creates a configuration that is equivalent to the described
programmatically created ObjectGrid event listener. The following text must be in
the myGrid.xml file:
<?xml version="1.0" encoding="UTF-8"?>
<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">

<objectGrids>
<objectGrid name="myGrid">

<bean id="ObjectGridEventListener"
className="com.company.org.MyObjectGridEventListener" />

<backingMap name="Book"/>
</objectGrid>

</objectGrids>
</objectGridConfig>

138 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

Notice the bean declarations come before the backingMap declarations. Provide
this file to the ObjectGridManager plug-in to facilitate the creation of this
configuration. The following code snippet demonstrates how to create an
ObjectGrid instance using this XML file. The ObjectGrid instance that is created has
an ObjectGridEventListener listener set on the myGrid ObjectGrid.
ObjectGridManager objectGridManager = ObjectGridManagerFactory.getObjectGridManager();
ObjectGrid myGrid = objectGridManager.createObjectGrid("myGrid",
new URL("file:etc/test/myGrid.xml"), true, false);

Eviction
WebSphere eXtreme Scale provides a default mechanism for evicting cache entries
and a plug-in for creating custom evictors. An evictor controls the membership of
entries in each BackingMap. The default evictor uses a time to live (TTL) eviction
policy for each BackingMap. If you provide a pluggable evictor mechanism, it
typically uses an eviction policy that is based on the number of entries instead of
on time.

TimeToLive property

A default TTL evictor is created with every backing map. The default evictor
removes entries based on a time to live concept. This behavior is defined by the
ttlType attribute, which has three types.
v None: Specifies that entries never expire and therefore are never removed from

the map.
v Creation time: Specifies that entries are evicted depending on when they were

created.
v Last accessed time: Specifies that entries are evicted depending upon when they

were last accessed.

If you are using the CREATION_TIME ttlType, the evictor evicts an entry when its
time from creation equals its TimeToLive attribute value (which is set in
milliseconds in your application configuration). If you set the TimeToLive attribute
value to 10 seconds, the entry is automatically evicted ten seconds after it was
inserted. It is important to take caution when setting this value for the
CREATION_TIME ttlType. This evictor is best used when reasonably high amounts
of additions to the cache exist that are only used for a set amount of time. With
this strategy, anything that is created is removed after the set amount of time.

Following is an example of where a TTL type of CREATION_TIME is useful. You
are using a Web application that obtains stock quotes, and getting the most recent
quotes is not critical. In this case, the stock quotes are cached in an ObjectGrid for
20 minutes. After 20 minutes, the ObjectGrid map entries expire and are evicted.
Every twenty minutes or so the ObjectGrid map uses the Loader plug-in to refresh
the map data with fresh data from the database. The database is updated every 20
minutes with the most recent stock quotes. So for this application, using a
TimeToLive value of 20 minutes is ideal.

If you are using the LAST_ACCESSED_TIME ttlType attribute, set the TimeToLive
to a lower number than if you are using the CREATION_TIME ttlType, because the
entries TimeToLive attribute is reset every time it is accessed. In other words, if the
TimeToLive attribute is equal to 15 and an entry has existed for 14 seconds but
then gets accessed, it does not expire again for another 15 seconds. If you set the
TimeToLive to a relatively high number, many entries might never be evicted.
However, if you set the value to something like 15 seconds, entries might be
removed when they are not often accessed.

Chapter 4. System APIs and plug-ins 139

Following is an example of where a TTL type of LAST_ACCESSED_TIME is useful.
An ObjectGrid map is used to hold session data from a client. Session data must
be destroyed if the client does not use the session data for some period of time.
For example, the session data times out after 30 minutes of no activity by the
client. In this case, using a TTL type of LAST_ACCESSED_TIME with the
TimeToLive attribute set to 30 minutes is exactly what is needed for this
application.

The following example creates a backing map, set its default evictor ttlType
attribute, and sets its TimeToLive property.
ObjectGrid objGrid = new ObjectGrid;
BackingMap bMap = objGrid.defineMap("SomeMap");
bMap.setTtlEvictorType(TTLType.LAST_ACCESSED_TIME);
bMap.setTimeToLive(1800);

Most evictor settings should be set before you initialize the ObjectGrid.

You may also write your own evictors: For more information, see the information
about writing a custom evictor in the Programming Guide.

Optional evictors

The default TTL evictor uses an eviction policy that is based on time, and the
number of entries in the BackingMap has no affect on the expiration time of an
entry. You can use an optional pluggable evictor to evict entries based on the
number of entries that exist instead of based on time.

The following optional pluggable evictors provide some commonly used
algorithms for deciding which entries to evict when a BackingMap grows beyond
some size limit. *
v The LRUEvictor evictor uses a least recently used (LRU) algorithm to decide

which entries to evict when the BackingMap exceeds a maximum number of
entries.

v The LFUEvictor evictor uses a least frequently used (LFU) algorithm to decide
which entries to evict when the BackingMap exceeds a maximum number of
entries.

The BackingMap informs an evictor as entries are created, modified, or removed in
a transaction. The BackingMap keeps track of these entries and chooses when to
evict one or more entries from the BackingMap.

A BackingMap has no configuration information for a maximum size. Instead,
evictor properties are set to control the evictor behavior. Both the LRUEvictor and
the LFUEvictor have a maximum size property that is used to cause the evictor to
begin to evict entries after the maximum size is exceeded. Like the TTL evictor, the
LRU and LFU evictors might not immediately evict an entry when the maximum
number of entries is reached to minimize impact on performance.

If the LRU or LFU eviction algorithm is not adequate for a particular application,
you can write your own evictors to create your eviction strategy.

Memory-based eviction

Important: Memory-based eviction is only supported on Java Platform, Enterprise
Edition Version 5 or later.

140 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

All built-in evictors support memory-based eviction that can be enabled on the
BackingMap interface by setting the evictionTriggers attribute of BackingMap to
MEMORY_USAGE_THRESHOLD. For more information about how to set the
evictionTriggers attribute on BackingMap, see the information about the
BackingMap interface and the ObjectGrid descriptor XML file in the Administration
Guide.

Memory-based eviction is based on heap usage threshold. When memory-based
eviction is enabled on BackingMap and the BackingMap has any built-in evictor,
the usage threshold is set to a default percentage of total memory if the threshold
has not been previously set.

When you are using memory-based eviction, you should configure the garbage
collection threshold to the same value as their target heap utilization. For example,
if the memory-based eviction threshold is set at 50 percent and the garbage
collection threshold is at the default 70 percent level, then the heap utilization can
go as high as 70 percent. This heap utilization increase occurs because
memory-based eviction is only triggered after a garbage collection cycle.

The memory-based eviction algorithm used by WebSphere eXtreme Scale is
sensitive to the behavior of the garbage collection algorithm in use. The best
algorithm for memory-based eviction is the IBM default throughput collector.
Generation garbage collection algorithms can cause undesired behavior, and so you
should not use these algorithms with memory-based eviction.

To change the usage threshold percentage, set the memoryThresholdPercentage
property on the container and server property files for eXtreme Scale server
processes.

During runtime, if the memory usage exceeds the target usage threshold,
memory-based evictors start evicting entries and try to keep memory usage below
the target usage threshold. However, no guarantee exists that the eviction speed is
fast enough to avoid a potential out of memory error if the system runtime
continues to quickly consume memory.

Writing a custom evictor
WebSphere eXtreme Scale allows you to write a custom eviction implementation.

You must create a custom evictor that implements the evictor interface and follows
the common eXtreme Scale plug-in conventions. The interface follows:
public interface Evictor
{

void initialize(BackingMap map, EvictionEventCallback callback);
void activate();
void apply(LogSequence sequence);
void deactivate();
void destroy();

}

v The initialize method is invoked during initialization of the BackingMap object.
This method initializes an Evictor plug-in with a reference to the BackingMap
and a reference to an object that implements the
com.ibm.websphere.objectgrid.plugins.EvictionEventCallback interface.

v The activate method is called to activate the Evictor. After this method is called,
the Evictor can use the EvictionEventCallback interface to evict map entries. If

Chapter 4. System APIs and plug-ins 141

the Evictor attempts to use the EvictionEventCallbackinterface to evict map
entries before the activate method is called, an IllegalStateException exception
results.

v The apply method is invoked when transactions that access one or more entries
of the BackingMap are committed. The apply method is passed a reference to an
object that implements the com.ibm.websphere.objectgrid.plugins.LogSequence
interface. The LogSequence interface allows an Evictor plug-in to determine
which BackingMap entries were created, modified, or removed by the
transaction. An Evictor uses this information in deciding when and which
entries to evict.

v The deactivate method is called to deactivate the Evictor. After this method is
called, the Evictor must stop using the EvictionEventCallback interface to evict
map entries. If the Evictor uses the EvictionEventcallback interface after this
method is called, an IllegalStateException exception results.

v The destroy method is invoked when the BackingMap is being destroyed. This
method allows an Evictor to terminate any threads that it might have created.

The EvictionEventCallback interface has the following methods:
public interface EvictionEventCallback
{

void evictMapEntries(List evictorDataList) throws ObjectGridException;
void evictEntries(List keysToEvictList) throws ObjectGridException;
void setEvictorData(Object key, Object data);
Object getEvictorData(Object key);

}

The EvictionEventCallback methods are used by an Evictor plug-in to call back to
the eXtreme Scale framework as follows:
v The setEvictorData method is used by an evictor to request the framework that

is used to store and associate some evictor object it creates with the entry
indicated by the key argument. The data is evictor specific and is determined by
the information the evictor needs to implement the algorithm it is using. For
example, in a least frequently used algorithm, the evictor maintains a count in
the evictor data object for tracking how many times the apply method is
invoked with a LogElement that refers to an entry for a given key.

v The getEvictorData method is used by an evictor to retrieve the data it passed to
the setEvictorData method during a prior apply method invocation. If evictor
data for the specified key argument is not found, a special KEY_NOT_FOUND
object that is defined on the EvictorCallback interface is returned.

v The evictMapEntries method is used by an evictor to request the eviction of one
or more map entries. Each object in the evictorDataList parameter must
implement the com.ibm.websphere.objectgrid.plugins.EvictorData interface. Also,
the same EvictorData instance that is passed to the setEvictorData method must
be in the evictor data list parameter of this method. The getKey method of the
EvictorData interface is used to determine which map entry to evict. The map
entry is evicted if the cache entry currently contains the exact same EvictorData
instance that is in the evictor data list for this cache entry.

v The evictEntries method is used by an evictor to request eviction of one or more
map entries. This method is used only if the object that is passed to the
setEvictorData method does not implement the
com.ibm.websphere.objectgrid.plugins.EvictorData interface.

After a transaction completes eXtreme Scale calls the apply method of the Evictor
interface. All transaction locks that were acquired by the completed transaction are
no longer held. Potentially, multiple threads can call the apply method at the same

142 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

time, and each thread can complete its own transaction. Because transaction locks
are already released by the completed transaction, the apply method must provide
its own synchronization to ensure the apply method is thread safe.

The reason to implement the EvictorData interface and use the evictMapEntries
method instead of the evictEntries method is to close a potential timing window.
Consider the following sequence of events:
1. Transaction 1 completes and calls the apply method with a LogSequence that

deletes the map entry for key 1.
2. Transaction 2 completes and calls the apply method with a LogSequence that

inserts a new map entry for key 1. In other words, transaction 2 recreates the
map entry that was deleted by transaction 1.

Because the evictor runs asynchronously from threads that run transactions, it is
possible that when the evictor decides to evict key 1, it might be evicting either the
map entry that existed prior to transaction 1 completion, or it might be evicting the
map entry that was recreated by transaction 2. To eliminate timing windows and to
eliminate uncertainty as to which version of the key 1 map entry the evictor
intended to evict, implement the EvictorData interface by the object that is passed
to the setEvictorData method. Use the same EvictorData instance for the life of a
map entry. When that map entry is deleted and is then recreated by another
transaction, the evictor should use a new instance of the EvictorData
implementation. By using the EvictorData implementation and by using the
evictMapEntries method, the evictor can ensure that the map entry is evicted if
and only if the cache entry that is associated with the map entry contains the
correct EvictorData instance.

The Evictor and EvictonEventCallback interfaces allow an application to plug in an
evictor that implements a user-defined algorithm for eviction. The following
snippet of code illustrates how you can implement the initialize method of Evictor
interface:
import com.ibm.websphere.objectgrid.BackingMap;
import com.ibm.websphere.objectgrid.plugins.EvictionEventCallback;
import com.ibm.websphere.objectgrid.plugins.Evictor;
import com.ibm.websphere.objectgrid.plugins.LogElement;
import com.ibm.websphere.objectgrid.plugins.LogSequence;
import java.util.LinkedList;
// Instance variables
private BackingMap bm;
private EvictionEventCallback evictorCallback;
private LinkedList queue;
private Thread evictorThread;
public void initialize(BackingMap map, EvictionEventCallback callback)
{

bm = map;
evictorCallback = callback;
queue = new LinkedList();
// spawn evictor thread
evictorThread = new Thread(this);
String threadName = "MyEvictorForMap−" + bm.getName();
evictorThread.setName(threadName);
evictorThread.start();

}

The preceding code saves the references to the map and callback objects in instance
variables so that they are available to the apply and destroy methods. In this
example, a linked list is created that is used as a first in, first out queue for
implementing a least recently used (LRU) algorithm. A thread is spawned off and a
reference to the thread is kept as an instance variable. By keeping this reference,
the destroy method can interrupt and terminate the spawned thread.

Ignoring synchronization requirements to make code thread safe, the following
snippet of code illustrates how the apply method of the Evictor interface can be
implemented:

Chapter 4. System APIs and plug-ins 143

import com.ibm.websphere.objectgrid.BackingMap;
import com.ibm.websphere.objectgrid.plugins.EvictionEventCallback;
import com.ibm.websphere.objectgrid.plugins.Evictor;
import com.ibm.websphere.objectgrid.plugins.EvictorData;
import com.ibm.websphere.objectgrid.plugins.LogElement;
import com.ibm.websphere.objectgrid.plugins.LogSequence;

public void apply(LogSequence sequence)
{

Iterator iter = sequence.getAllChanges();
while (iter.hasNext())
{

LogElement elem = (LogElement)iter.next();
Object key = elem.getKey();
LogElement.Type type = elem.getType();
if (type == LogElement.INSERT)
{

// do insert processing here by adding to front of LRU queue.
EvictorData data = new EvictorData(key);
evictorCallback.setEvictorData(key, data);
queue.addFirst(data);

}
else if (type == LogElement.UPDATE || type == LogElement.FETCH || type == LogElement.TOUCH)
{

// do update processing here by moving EvictorData object to
// front of queue.
EvictorData data = evictorCallback.getEvictorData(key);
queue.remove(data);
queue.addFirst(data);

}
else if (type == LogElement.DELETE || type == LogElement.EVICT)
{

// do remove processing here by removing EvictorData object
// from queue.
EvictorData data = evictorCallback.getEvictorData(key);
if (data == EvictionEventCallback.KEY_NOT_FOUND)
{

// Assumption here is your asynchronous evictor thread
// evicted the map entry before this thread had a chance
// to process the LogElement request. So you probably
// need to do nothing when this occurs.

}
else
{

// Key was found. So process the evictor data.
if (data != null)
{

// Ignore null returned by remove method since spawned
// evictor thread may have already removed it from queue.
// But we need this code in case it was not the evictor
// thread that caused this LogElement to occur.
queue.remove(data);

}
else
{

// Depending on how you write you Evictor, this possibility
// may not exist or it may indicate a defect in your evictor
// due to improper thread synchronization logic.

}
}

}
}

}

Insert processing in the apply method typically handles the creation of an evictor
data object that is passed to the setEvictorData method of the
EvictionEventCallback interface. Because this evictor illustrates a LRU
implementation, the EvictorData is also added to the front of the queue that was
created by the initialize method. Update processing in the apply method typically
updates the evictor data object that was created by some prior invocation of the
apply method (for example, by the insert processing of the apply method). Because
this evictor is an LRU implementation, it needs to move the EvictorData object
from its current queue position to the front of the queue. The spawned evictor
thread removes the last EvictorData object in the queue because the last queue
element represents the least recently used entry. The assumption is that the
EvictorData object has a getKey method on it so that the evictor thread knows the
keys of the entries that need to be evicted. Keep in mind that this example is
ignoring synchronization requirements to make code thread safe. A real custom
evictor is more complicated because it deals with synchronization and performance
bottlenecks that occur as a result of the synchronization points.

144 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

The following snippets of code illustrate the destroy method and the run method
of the runnable thread that the initialize method spawned:
// Destroy method simply interrupts the thread spawned by the initialize method.
public void destroy()
{

evictorThread.interrupt();
}

// Here is the run method of the thread that was spawned by the initialize method.
public void run()
{

// Loop until destroy method interrupts this thread.
boolean continueToRun = true;
while (continueToRun)
{

try
{

// Sleep for a while before sweeping over queue.
// The sleepTime is a good candidate for a evictor
// property to be set.
Thread.sleep(sleepTime);
int queueSize = queue.size();
// Evict entries if queue size has grown beyond the
// maximum size. Obviously, maximum size would
// be another evictor property.
int numToEvict = queueSize − maxSize;
if (numToEvict > 0)
{

// Remove from tail of queue since the tail is the
// least recently used entry.
List evictList = new ArrayList(numToEvict);
while(queueSize > ivMaxSize)
{

EvictorData data = null;
try
{

EvictorData data = (EvictorData) queue.removeLast();
evictList.add(data);
queueSize = queue.size();

}
catch (NoSuchElementException nse)
{

// The queue is empty.
queueSize = 0;

}
}
// Request eviction if key list is not empty.
if (! evictList.isEmpty())
{

evictorCallback.evictMapEntries(evictList);
}

}
}
catch (InterruptedException e)
{

continueToRun = false;
}

} // end while loop
} // end run method.

Optional RollBackEvictor interface

The com.ibm.websphere.objectgrid.plugins.RollbackEvictor interface can be
optionally implemented by an Evictor plug-in. By implementing this interface, an
evictor can be invoked not only when transactions are committed, but also when
transactions are rolled back.
public interface RollbackEvictor
{

void rollingBack(LogSequence ls);
}

The apply method is called only if a transaction is committed. If a transaction is
rolled back and the RollbackEvictor interface is implemented by the evictor, the
rollingBack method is invoked. If the RollbackEvictor interface is not implemented
and the transaction rolls back, the apply method and the rollingBack method are
not called.

Chapter 4. System APIs and plug-ins 145

Writing an index plug-in
With a MapIndexPlugin plug-in, or index, you can write custom indexing
strategies that are beyond the built-in indexes that eXtreme Scale provides.

For general information about indexing, see “Indexing” on page 118.

For information about using indexing, see “Using indexing for non-key data
access” on page 120.

MapIndexPlugin implementations must use the MapIndexPlugin interface and
follow the common eXtreme Scale plug-in conventions.

The following sections include some of the important methods of the index
interface.

setProperties method

Use the setProperties method to initialize the index plug-in programmatically. The
Properties object parameter that is passed into the method should contain required
configuration information to initialize the index plug-in properly. The setProperties
method implementation, along with the getProperties method implementation, are
required in a distributed environment because the index plug-in configuration
moves between client and server processes. An implementation example of this
method follows.
setProperties(Properties properties)

// setProperties method sample code
public void setProperties(Properties properties) {

ivIndexProperties = properties;

String ivRangeIndexString = properties.getProperty("rangeIndex");
if (ivRangeIndexString != null && ivRangeIndexString.equals("true")) {

setRangeIndex(true);
}
setName(properties.getProperty("indexName"));
setAttributeName(properties.getProperty("attributeName"));

String ivFieldAccessAttributeString = properties.getProperty("fieldAccessAttribute");
if (ivFieldAccessAttributeString != null && ivFieldAccessAttributeString.equals("true")) {

setFieldAccessAttribute(true);
}

String ivPOJOKeyIndexString = properties.getProperty("POJOKeyIndex");
if (ivPOJOKeyIndexString != null && ivPOJOKeyIndexString.equals("true")) {

setPOJOKeyIndex(true);
}

}

getProperties method

The getProperties method extracts the index plug-in configuration from a
MapIndexPlugin instance. You can use the extracted properties to initialize another
MapIndexPlugin instance to have the same internal states. The getProperties
method and setProperties method implementations are required in a distributed
environment. An implementation example of the getProperties method follows.
getProperties()

// getProperties method sample code
public Properties getProperties() {

Properties p = new Properties();
p.put("indexName", indexName);
p.put("attributeName", attributeName);
p.put("rangeIndex", ivRangeIndex ? "true" : "false");

146 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

p.put("fieldAccessAttribute", ivFieldAccessAttribute ? "true" : "false");
p.put("POJOKeyIndex", ivPOJOKeyIndex ? "true" : "false");
return p;

}

setEntityMetadata method

The setEntityMetadata method is called by the WebSphere eXtreme Scale run time
during initialization to set the EntityMetadata of the associated BackingMap on the
MapIndexPlugin instance. The EntityMetadata is required for supporting indexing
of tuple objects. A tuple is a data set that represents an entity object or its key. If
the BackingMap is for an entity, then you must implement this method.

The following code sample implements the setEntityMetadata method.
setEntityMetadata(EntityMetadata entityMetadata)

// setEntityMetadata method sample code
public void setEntityMetadata(EntityMetadata entityMetadata) {

ivEntityMetadata = entityMetadata;
if (ivEntityMetadata != null) {

// this is a tuple map
TupleMetadata valueMetadata = ivEntityMetadata.getValueMetadata();
int numAttributes = valueMetadata.getNumAttributes();
for (int i = 0; i < numAttributes; i++) {

String tupleAttributeName = valueMetadata.getAttribute(i).getName();
if (attributeName.equals(tupleAttributeName)) {

ivTupleValueIndex = i;
break;

}
}

if (ivTupleValueIndex == -1) {
// did not find the attribute in value tuple, try to find it on key tuple.
// if found on key tuple, implies key indexing on one of tuple key attributes.
TupleMetadata keyMetadata = ivEntityMetadata.getKeyMetadata();
numAttributes = keyMetadata.getNumAttributes();
for (int i = 0; i < numAttributes; i++) {

String tupleAttributeName = keyMetadata.getAttribute(i).getName();
if (attributeName.equals(tupleAttributeName)) {

ivTupleValueIndex = i;
ivKeyTupleAttributeIndex = true;
break;

}
}

}

if (ivTupleValueIndex == -1) {
// if entityMetadata is not null and we could not find the

// attributeName in entityMetadata, this is an
// error
throw new ObjectGridRuntimeException("Invalid attributeName. Entity: " +

ivEntityMetadata.getName());
}

}
}

Attribute name methods

The setAttributeName method sets the name of the attribute to be indexed. The
cached object class must provide the get method for the indexed attribute. For
example, if the object has an employeeName or EmployeeName attribute, the
index calls the getEmployeeName method on the object to extract the attribute
value. The attribute name must be the same as the name in the get method, and
the attribute must implement the Comparable interface. If the attribute is boolean
type, you can also use the isAttributeName method pattern.

The getAttributeName method returns the name of the indexed attribute.

getAttribute method

The getAttribute method returns the indexed attribute value from the specified
object. For example, if an Employee object has an attribute called employeeName

Chapter 4. System APIs and plug-ins 147

that is indexed, you can use the getAttribute method to extract the employeeName
attribute value from a specified Employee object. This method is required in a
distributed WebSphere eXtreme Scale environment.
getAttribute(Object value)

// getAttribute method sample code
public Object getAttribute(Object value) throws ObjectGridRuntimeException {

if (ivPOJOKeyIndex) {
// In the POJO key indexing case, no need to get attribute from value object.
// The key itself is the attribute value used to build the index.
return null;

}

try {
Object attribute = null;
if (value != null) {

// handle Tuple value if ivTupleValueIndex != -1
if (ivTupleValueIndex == -1) {

// regular value
if (ivFieldAccessAttribute) {

attribute = this.getAttributeField(value).get(value);
} else {

attribute = getAttributeMethod(value).invoke(value, emptyArray);
}

} else {
// Tuple value
attribute = extractValueFromTuple(value);

}
}
return attribute;

} catch (InvocationTargetException e) {
throw new ObjectGridRuntimeException(

"Caught unexpected Throwable during index update processing,
index name = " + indexName + ": " + t,

t);
} catch (Throwable t) {

throw new ObjectGridRuntimeException(
"Caught unexpected Throwable during index update processing,

index name = " + indexName + ": " + t,
t);

}
}

TransactionCallback plug-in
Use the TransactionCallback plug-in to customize versioning and comparison
operations of cache objects when you are using the optimistic locking strategy.

You can provide a pluggable optimistic callback object that implements the
com.ibm.websphere.objectgrid.plugins.OptimisticCallback interface. For entity
maps, a high performance OptimisticCallback plug-in is automatically configured.

Purpose

Use the OptimisticCallback interface to provide optimistic comparison operations
for the values of a map. An OptimisticCallback implementation is required when
you use the optimistic locking strategy. WebSphere eXtreme Scale provides a
default OptimisticCallback implementation. However, usually the application must
plug in its own implementation of the OptimisticCallback interface. See the
information about locking strategies in the Product Overview for more information.

Default implementation

The eXtreme Scale framework provides a default implementation of the
OptimisticCallback interface that is used if the application does not plug in an
application-provided OptimisticCallback object, as demonstrated in the previous
section. The default implementation always returns the special value of
NULL_OPTIMISTIC_VERSION as the version object for the value and never
updates the version object. This action makes optimistic comparison a no operation
function. In most cases, you do not want the no operation function to occur when
you are using the optimistic locking strategy. Your applications must implement

148 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

the OptimisticCallback interface and plug in their own OptimisticCallback
implementations so that the default implementation is not used. However, at least
one scenario exists where the default provided OptimisticCallback implementation
is useful. Consider the following situation:
v A loader is plugged for the backing map.
v The loader knows how to perform the optimistic comparison without assistance

from an OptimisticCallback plug-in.

How can the loader know how to deal with optimistic versioning without
assistance from an OptimisticCallback object? The loader has knowledge of the
value class object and knows which field of the value object is used as an
optimistic versioning value. For example, suppose the following interface is used
for the value object for the employees map:
public interface Employee
{

// Sequential sequence number used for optimistic versioning.
public long getSequenceNumber();
public void setSequenceNumber(long newSequenceNumber);
// Other get/set methods for other fields of Employee object.

}

In this case, the loader knows that it can use the getSequenceNumber method to
get the current version information for an Employee value object. The loader
increments the returned value to generate a new version number before updating
the persistent storage with the new Employee value. For a Java database
connectivity (JDBC) loader, the current sequence number in the where clause of an
overqualified SQL update statement is used, and it uses the new generated
sequence number to set the sequence number column to the new sequence number
value.

Another possibility is that the loader makes use of some backend-provided
function that automatically updates a hidden column that can be used for
optimistic versioning. In some cases, a stored procedure or trigger can possibly be
used to help maintain a column that holds versioning information. If the loader is
using one of these techniques for maintaining optimistic versioning information,
then the application does not need to provide an OptimisticCallback
implementation. You can use the default OptimisticCallback implementation
because the loader is able to handle optimistic versioning without any assistance
from an OptimisticCallback object.

Default implementation for entities

Entities are stored in the ObjectGrid using tuple objects. The default
OptimisticCallback implementation behaves similarly to the behavior for non-entity
maps. However, the version field in the entity is identified using the @Version
annotation or the version attribute in the entity descriptor XML file.

The version attribute can be of the following types: int, Integer, short, Short, long,
Long or java.sql.Timestamp. An entity should have only one version attribute
defined. The version attribute should be set only during construction. After the
entity is persisted, the value of the version attribute should not be modified.

If a version attribute is not configured and the optimistic locking strategy is used,
then the entire tuple is implicitly versioned using the entire state of the tuple.

In the following example, the Employee entity has a long version attribute named
SequenceNumber:

Chapter 4. System APIs and plug-ins 149

@Entity
public class Employee
{
private long sequence;

// Sequential sequence number used for optimistic versioning.
@Version
public long getSequenceNumber() {

return sequence;
}
public void setSequenceNumber(long newSequenceNumber) {

this.sequence = newSequenceNumber;
}
// Other get/set methods for other fields of Employee object.

}

Writing an OptimisticCallback implementation

An OptimisticCallback implementation must implement the OptimisticCallback
interface and follow the common ObjectGrid plug-in conventions

The following list provides a description or consideration for each of the methods
in the OptimisticCallback interface:

NULL_OPTIMISTIC_VERSION

This special value is returned by getVersionedObjectForValue method if the default
OptimisticCallback implementation is used instead of an application-provided
OptimisticCallback implementation.

getVersionedObjectForValue method

The getVersionedObjectForValue method might return a copy of the value or it
might return an attribute of the value that can be used for versioning purposes.
This method is called whenever an object is associated with a transaction. When no
Loader is set into a backing map, the backing map uses this value at commit time
to perform an optimistic version comparison. The optimistic version comparison is
used by the backing map to ensure that the version has not changed since this
transaction first accessed the map entry that was modified by this transaction. If
another transaction had already modified the version for this map entry, the
version comparison fails and the backing map displays an
OptimisticCollisionException exception to force rollback of the transaction. If a
Loader is plugged in, the backing map does not use the optimistic versioning
information. Instead, the Loader is responsible for performing the optimistic
versioning comparison and updating the versioning information when necessary.
The Loader typically gets the initial versioning object from the LogElement passed
to the batchUpdate method on the Loader, which is called when a flush operation
occurs or a transaction is committed.

The following code shows the implementation used by the
EmployeeOptimisticCallbackImpl object:
public Object getVersionedObjectForValue(Object value)
{

if (value == null)
{

return null;
}
else
{

150 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

Employee emp = (Employee) value;
return new Long(emp.getSequenceNumber());

}
}

As demonstrated in the previous example, the sequenceNumber attribute is
returned in a java.lang.Long object as expected by the Loader, which implies that
the same person that wrote the Loader either wrote the
EmployeeOptimisticCallbackImpl implementation or worked closely with the
person that implemented the EmployeeOptimisticCallbackImpl implementation.
For example, these people agreed on the value that is returned by the
getVersionedObjectForValue method. As previously described, the default
OptimisticCallback implementation returns the special value
NULL_OPTIMISTIC_VERSION as the version object.

updateVersionedObjectForValue method

The updateVersionedObjectForValue method is called when a transaction has
updated a value and a new versioned object is needed. If the
getVersionedObjectForValue method returns an attribute of the value, this method
typically updates the attribute value with a new version object. If the
getVersionedObjectForValue method returns a copy of the value, this method
typically would not update. The default OptimisticCallback does not update
because the default implementation of the getVersionedObjectForValue method
always returns the special value NULL_OPTIMISTIC_VERSION as the version
object. The following example shows the implementation used by the
EmployeeOptimisticCallbackImpl object that is used in the OptimisticCallback
section:
public void updateVersionedObjectForValue(Object value)
{

if (value != null)
{

Employee emp = (Employee) value;
long next = emp.getSequenceNumber() + 1;
emp.updateSequenceNumber(next);

}
}

As demonstrated in the previous example, the sequenceNumber attribute is
increments by one so that the next time the getVersionedObjectForValue method is
called, the java.lang.Long value that is returned has a long value that is the
original sequence number value. Plus one, for example, is the next version value
for this employee instance. Again, this example implies that the same person that
wrote the Loader either wrote EmployeeOptimisticCallbackImpl implementation or
worked closely with the person that implemented the
EmployeeOptimisticCallbackImpl implementation.

serializeVersionedValue method

This method writes the versioned value to the specified stream. Depending on the
implementation, the versioned value can be used to identify optimistic update
collisions. In some implementations, the versioned value is a copy of the original
value. Other implementations might have a sequence number or some other object
to indicate the version of the value. Because the actual implementation is
unknown, this method is provided to perform the proper serialization. The default
implementation calls the writeObject method.

Chapter 4. System APIs and plug-ins 151

inflateVersionedValue method

This method takes the serialized version of the versioned value and returns the
actual versioned value object. Depending on the implementation, the versioned
value can be used to identify optimistic update collisions. In some
implementations, the versioned value is a copy of the original value. Other
implementations might have a sequence number or some other object to indicate
the version of the value. Because the actual implementation is unknown, this
method is provided to perform the proper deserialization. The default
implementation calls the readObject method.

Using an application-provided OptimisticCallback implementation

You have two approaches to add an application-provided OptimisticCallback into
the BackingMap configuration: programmatic configuration and XML
configuration.

Programmatically plug in an OptimisticCallback implementation

The following example demonstrates how an application can programmatically
plug in an OptimisticCallback object for the employee backing map in the grid1
ObjectGrid instance:
import com.ibm.websphere.objectgrid.ObjectGridManagerFactory;
import com.ibm.websphere.objectgrid.ObjectGridManager;
import com.ibm.websphere.objectgrid.ObjectGrid;
import com.ibm.websphere.objectgrid.BackingMap;
ObjectGridManager ogManager = ObjectGridManagerFactory.getObjectGridManager();
ObjectGrid og = ogManager.createObjectGrid("grid1");
BackingMap bm = dg.defineMap("employees");
EmployeeOptimisticCallbackImpl cb = new EmployeeOptimisticCallbackImpl();
bm.setOptimisticCallback(cb);

XML configuration approach to plug in an OptimisticCallback
implementation

The EmployeeOptimisticCallbackImpl object in the preceding example must
implement the OptimisticCallback interface. The application can also use an XML
file to plug in its OptimisticCallback object as shown in the following example:
<?xml version="1.0" encoding="UTF-8"?>
<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">
<objectGrids>

<objectGrid name="grid1">
<backingMap name="employees" pluginCollectionRef="employees" lockStrategy="OPTIMISTIC" />

</objectGrid>
</objectGrids>

<backingMapPluginCollections>
<backingMapPluginCollection id="employees">

<bean id="OptimisticCallback" className="com.xyz.EmployeeOptimisticCallbackImpl" />
</backingMapPluginCollection>

</backingMapPluginCollections>
</objectGridConfig>

Introduction to plug-in slots
A plug-in slot is a transactional storage space that is reserved for plug-ins that
share transactional context. These slots provide a way for eXtreme Scale plug-ins to
communicate with each other, share transactional context, and ensure that
transactional resources are used correctly and consistently within a transaction.

A plug-in can store transactional context, such as database connection, Java
Message Service (JMS) connection, and so on, in a plug-in slot. The stored

152 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

transactional context can be retrieved by any plug-in that knows the plug-in slot
number, which serves as the key to retrieve transactional context.

Using plug-in slots

Plug-in slots are part of the TxID Interface. See the API documentation for more
information about the interface.The slots are entries on an ArrayList array. Plug-ins
can reserve an entry in the ArrayList array by calling the ObjectGrid.reserveSlot
method and indicating that it wants a slot on all TxID objects. After the slots are
reserved, plug-ins can put transactional context into slots of each TxID object and
retrieve the context later. The put and get operations are coordinated by slot
numbers that are returned by the ObjectGrid.reserveSlot method.

A plug-in typically has a life cycle. Using plug-in slots has to fit into the life cycle
of plug-in. Typically, the plug-in must reserve plug-in slots during the initialization
stage and obtain slot numbers for each slot. During normal run time, the plug-in
puts transactional context into the reserved slot in the TxID object at the
appropriate point. This appropriate point is typically at the beginning of the
transaction. The plug-in or other plug-ins can then get the stored transactional
context by the slot number from the TxID within the transaction.

The plug-in typically performs a clean up by removing transactional context and
the slots. The following snippet of code illustrates how to use plug-in slots in a
TransactionCallback plug-in:
public class DatabaseTransactionCallback implements TransactionCallback {

int connectionSlot;
int autoCommitConnectionSlot;
int psCacheSlot;
Properties ivProperties = new Properties();

public void initialize(ObjectGrid objectGrid) throws TransactionCallbackException {
// In initialization stage, reserve desired plug-in slots by calling the
//reserveSlot method of ObjectGrid and
// passing in the designated slot name, TxID.SLOT_NAME.
// Note: you have to pass in this TxID.SLOT_NAME that is designated
// for application.
try {

// cache the returned slot numbers
connectionSlot = objectGrid.reserveSlot(TxID.SLOT_NAME);
psCacheSlot = objectGrid.reserveSlot(TxID.SLOT_NAME);
autoCommitConnectionSlot = objectGrid.reserveSlot(TxID.SLOT_NAME);

} catch (Exception e) {
}

}

public void begin(TxID tx) throws TransactionCallbackException {
// put transactional contexts into the reserved slots at the
// beginning of the transaction.
try {

Connection conn = null;
conn = DriverManager.getConnection(ivDriverUrl, ivProperties);
tx.putSlot(connectionSlot, conn);
conn = DriverManager.getConnection(ivDriverUrl, ivProperties);
conn.setAutoCommit(true);
tx.putSlot(autoCommitConnectionSlot, conn);
tx.putSlot(psCacheSlot, new HashMap());

} catch (SQLException e) {
SQLException ex = getLastSQLException(e);
throw new TransactionCallbackException("unable to get connection", ex);

}
}

public void commit(TxID id) throws TransactionCallbackException {
// get the stored transactional contexts and use them
// then, clean up all transactional resources.
try {

Connection conn = (Connection) id.getSlot(connectionSlot);
conn.commit();
cleanUpSlots(id);

} catch (SQLException e) {
SQLException ex = getLastSQLException(e);
throw new TransactionCallbackException("commit failure", ex);

}
}

void cleanUpSlots(TxID tx) throws TransactionCallbackException {

Chapter 4. System APIs and plug-ins 153

closePreparedStatements((Map) tx.getSlot(psCacheSlot));
closeConnection((Connection) tx.getSlot(connectionSlot));
closeConnection((Connection) tx.getSlot(autoCommitConnectionSlot));

}

/**
* @param map
*/
private void closePreparedStatements(Map psCache) {

try {
Collection statements = psCache.values();
Iterator iter = statements.iterator();
while (iter.hasNext()) {

PreparedStatement stmt = (PreparedStatement) iter.next();
stmt.close();

}
} catch (Throwable e) {
}

}

/**
* Close connection and swallow any Throwable that occurs.
*
* @param connection
*/
private void closeConnection(Connection connection) {

try {
connection.close();

} catch (Throwable e1) {
}

}

public void rollback(TxID id) throws TransactionCallbackException
// get the stored transactional contexts and use them
// then, clean up all transactional resources.
try {

Connection conn = (Connection) id.getSlot(connectionSlot);
conn.rollback();
cleanUpSlots(id);

} catch (SQLException e) {
}

}

public boolean isExternalTransactionActive(Session session) {
return false;

}

// Getter methods for the slot numbers, other plug-in can obtain the slot numbers
// from these getter methods.

public int getConnectionSlot() {
return connectionSlot;

}
public int getAutoCommitConnectionSlot() {

return autoCommitConnectionSlot;
}
public int getPreparedStatementSlot() {

return psCacheSlot;
}

The following snippet of code illustrates how a Loader can get the stored
transactional context that is put by previous TransactionCallback plug-in example:
public class DatabaseLoader implements Loader
{

DatabaseTransactionCallback tcb;
public void preloadMap(Session session, BackingMap backingMap) throws LoaderException
{

// The preload method is the initialization method of the Loader.
// Obtain interested plug-in from Session or ObjectGrid instance.
tcb =

(DatabaseTransactionCallback)session.getObjectGrid().getTransactionCallback();
}
public List get(TxID txid, List keyList, boolean forUpdate) throws LoaderException
{

// get the stored transactional contexts that is put by tcb’s begin method.
Connection conn = (Connection)txid.getSlot(tcb.getConnectionSlot());
// implement get here
return null;

}
public void batchUpdate(TxID txid, LogSequence sequence) throws LoaderException,
OptimisticCollisionException
{

// get the stored transactional contexts that is put by tcb’s begin method.
Connection conn = (Connection)txid.getSlot(tcb.getConnectionSlot());
// implement batch update here ...

}
}

154 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

External transaction managers
Typically, eXtreme Scale transactions begin with the Session.begin method and end
with the Session.commit method. However, when an ObjectGrid is embedded, an
external transaction coordinator can start and end transactions. In this case, you do
not need to call the begin or commit methods.

External transaction coordination

The TransactionCallback plug-in is extended with the
isExternalTransactionActive(Session session) method that associates the eXtreme
Scale session with an external transaction. The method header follows:
public synchronized boolean isExternalTransactionActive(Session session)

For example, eXtreme Scale can be set up to integrate with WebSphere Application
Server and WebSphere Extended Deployment.

Also, eXtreme Scale provides a built in plug-in called the WebSphere
“TransactionCallback plug-in” on page 148, which describes how to build the
plug-in for WebSphere Application Server environments, but you can adapt the
plug-in for other frameworks.

The key to this seamless integration is the exploitation of the
ExtendedJTATransaction API in WebSphere Application Server Version 5.x and
Version 6.x. However, if you are using WebSphere Application Server Version 6.0.2,
you must apply APAR PK07848 to support this method. Use the following sample
code to associate an ObjectGrid session with a WebSphere Application Server
transaction ID:
/**
* This method is required to associate an objectGrid session with a WebSphere
* Application Server transaction ID.
*/
Map/**/ localIdToSession;
public synchronized boolean isExternalTransactionActive(Session session)
{

// remember that this localid means this session is saved for later.
localIdToSession.put(new Integer(jta.getLocalId()), session);
return true;

}

Retrieve an external transaction

Sometimes you might need to retrieve an external transaction service object for the
TransactionCallback plug-in to use. In the WebSphere Application Server server,
look up the ExtendedJTATransaction object from its namespace as shown in the
following example:
public J2EETransactionCallback() {

super();
localIdToSession = new HashMap();
String lookupName="java:comp/websphere/ExtendedJTATransaction";
try
{

InitialContext ic = new InitialContext();
jta = (ExtendedJTATransaction)ic.lookup(lookupName);
jta.registerSynchronizationCallback(this);

}
catch(NotSupportedException e)
{

throw new RuntimeException("Cannot register jta callback", e);
}

Chapter 4. System APIs and plug-ins 155

catch(NamingException e){
throw new RuntimeException("Cannot get transaction object");

}
}

For other products, you can use a similar approach to retrieve the transaction
service object.

Control commit by external callback

The TransactionCallback plug-in must receive an external signal to commit or roll
back the eXtreme Scale session. To receive this external signal, use the callback
from the external transaction service. Implement the external callback interface and
register it with the external transaction service. For example, with WebSphere
Application Server, implement the SynchronizationCallback interface, as shown in
the following example:
public class J2EETransactionCallback implements
com.ibm.websphere.objectgrid.plugins.TransactionCallback, SynchronizationCallback {

public J2EETransactionCallback() {
super();
String lookupName="java:comp/websphere/ExtendedJTATransaction";
localIdToSession = new HashMap();
try {

InitialContext ic = new InitialContext();
jta = (ExtendedJTATransaction)ic.lookup(lookupName);
jta.registerSynchronizationCallback(this);

} catch(NotSupportedException e) {
throw new RuntimeException("Cannot register jta callback", e);

}
catch(NamingException e) {

throw new RuntimeException("Cannot get transaction object");
}

}

public synchronized void afterCompletion(int localId, byte[] arg1,boolean didCommit) {
Integer lid = new Integer(localId);
// find the Session for the localId
Session session = (Session)localIdToSession.get(lid);
if(session != null) {

try {
// if WebSphere Application Server is committed when
// hardening the transaction to backingMap.
// We already did a flush in beforeCompletion
if(didCommit) {

session.commit();
} else {

// otherwise rollback
session.rollback();

}
} catch(NoActiveTransactionException e) {

// impossible in theory
} catch(TransactionException e) {

// given that we already did a flush, this should not fail
} finally {

// always clear the session from the mapping map.
localIdToSession.remove(lid);

}
}

}

public synchronized void beforeCompletion(int localId, byte[] arg1) {
Session session = (Session)localIdToSession.get(new Integer(localId));
if(session != null) {

try {
session.flush();

} catch(TransactionException e) {
// WebSphere Application Server does not formally define
// a way to signal the
// transaction has failed so do this
throw new RuntimeException("Cache flush failed", e);

}
}

}
}

Use eXtreme Scale APIs with the TransactionCallback plug-in

The TransactionCallback plug-in disables autocommit in eXtreme Scale. The normal
usage pattern for an eXtreme Scale follows:

156 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

Session ogSession = ...;
ObjectMap myMap = ogSession.getMap("MyMap");
ogSession.begin();
MyObject v = myMap.get("key");
v.setAttribute("newValue");
myMap.update("key", v);
ogSession.commit();

When this TransactionCallback plug-in is in use, eXtreme Scale assumes that the
application uses the eXtreme Scale when a container-managed transaction is
present. The previous code snippet changes the following code in this
environment:
public void myMethod() {

UserTransaction tx = ...;
tx.begin();
Session ogSession = ...;
ObjectMap myMap = ogSession.getMap("MyMap");
yObject v = myMap.get("key");
v.setAttribute("newValue");
myMap.update("key", v);
tx.commit();

}

The myMethod method is similar to a Web application scenario. The application
uses the normal UserTransaction interface to begin, commit, and roll back
transactions. The eXtreme Scale automatically begins and commits around the
container transaction. If the method is an Enterprise JavaBeans (EJB) method that
uses the TX_REQUIRES attribute, then remove the UserTransaction reference and
the calls to begin and commit transactions and the method works the same way. In
this case, the container is responsible for starting and ending the transaction.

Using a Loader
With an eXtreme Scale Loader plug-in, an ObjectGrid map can behave as a
memory cache for data that is typically kept in a persistent store on either the
same system or some other system. Typically, a database or file system is used as
the persistent store. A remote Java virtual machine (JVM) can also be used as the
source of data, allowing hub-based caches to be built using ObjectGrid. A loader
has the logic for reading and writing data to and from a persistent store.

Loaders are backing map plug-ins that are invoked when changes are made to the
backing map or when the backing map is unable to satisfy a data request (a cache
miss).

See the information about caching concepts in the Product Overview for more
information.

Chapter 4. System APIs and plug-ins 157

WebSphere eXtreme Scale includes two built-in loaders to integrate with relational
database back ends. The Java Persistence API (JPA) loaders use the
Object-Relational Mapping (ORM) capabilities of both the OpenJPA and Hibernate
implementations of the JPA specification.

Using a loader

To add a loader into the BackingMap configuration, you can use programmatic
configuration or XML configuration. A loader has the following relationship with a
backing map:
v A backing map can have only one loader.
v A client backing map (near cache) cannot have a loader.
v A loader definition can be applied to multiple backing maps, but each backing

map has its own loader instance.

Programmatically plug in a Loader

The following snippet of code demonstrates how to plug an application-provided
Loader into the backing map for map1 using the ObjectGrid API:
import com.ibm.websphere.objectgrid.ObjectGridManagerFactory;
import com.ibm.websphere.objectgrid.ObjectGridManager;
import com.ibm.websphere.objectgrid.ObjectGrid;
import com.ibm.websphere.objectgrid.BackingMap;
ObjectGridManager ogManager = ObjectGridManagerFactory.getObjectGridManager();
ObjectGrid og = ogManager.createObjectGrid("grid");
BackingMap bm = og.defineMap("map1");
MyLoader loader = new MyLoader();
loader.setDataBaseName("testdb");
loader.setIsolationLevel("read committed");
bm.setLoader(loader);

Database

Loader

Server Core Cache
(BackingMap)

Transactional Cache
(ObjectMap)

O
b
je

c
tG

ri
d

Transactional Cache
(ObjectMap)

Primary Shard

JVM

S
e
rv

e
r

P
ro

c
e
s
s

Figure 3. Loader

158 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

This snippet assumes that the MyLoader class is the application-provided class that
implements the com.ibm.websphere.objectgrid.plugins.Loader interface. Because
the association of a Loader with a backing map cannot be changed after ObjectGrid
is initialized, the code must be run before invoking the initialize method of the
ObjectGrid interface that is being called. An IllegalStateException exception occurs
on a setLoader method call if it is called after initialization has occurred.

The application-provided Loader can have set properties. In the example, the
MyLoader loader is used to read and write data from a table in a relational
database. The loader must specify the name of the database and the SQL isolation
level. The MyLoader loader has the setDataBaseName and setIsolationLevel
methods that allow the application to set these two Loader properties.

XML configuration approach to plug in a Loader

An application-provided Loader can also be plugged in by using an XML file. The
following example demonstrates how to plug the MyLoader loader into the map1
backing map with the same database name and isolation level Loader properties:
<?xml version="1.0" encoding="UTF-8" ?>
<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">
<objectGrids>

<objectGrid name="grid">
<backingMap name="map1" pluginCollectionRef="map1" lockStrategy="OPTIMISTIC" />

</objectGrid>
</objectGrids>
<backingMapPluginCollections>

<backingMapPluginCollection id="map1">
<bean id="Loader" className="com.myapplication.MyLoader">

<property name="dataBaseName"
type="java.lang.String"
value="testdb"
description="database name" />

<property name="isolationLevel"
type="java.lang.String"
value="read committed"
description="iso level" />

</bean>
</backingMapPluginCollection>

</backingMapPluginCollections>
</objectGridConfig>

Related tasks

“Troubleshooting loaders” on page 274
Use this information to troubleshoot issues with your database loaders.
Related reference

“JPA loader programming considerations” on page 164
A Java Persistence API (JPA) Loader is a loader plug-in implementation that uses
JPA to interact with the database. Use the following considerations when you
develop an application that uses a JPA loader.

Writing a loader
You can write your own loader plug-in implementation in your applications, which
must follow the common WebSphere eXtreme Scale plug-in conventions.

Including a loader plug-in

The Loader interface has the following definition:
public interface Loader
{

static final SpecialValue KEY_NOT_FOUND;
List get(TxID txid, List keyList, boolean forUpdate) throws LoaderException;

Chapter 4. System APIs and plug-ins 159

void batchUpdate(TxID txid, LogSequence sequence) throws
LoaderException, OptimisticCollisionException;
void preloadMap(Session session, BackingMap backingMap) throws LoaderException;

}

See the information about Loaders in the Administration Guide for more
information.

get method

The backing map calls the Loader get method to get the values that are associated
with a key list that is passed as the keyList argument. The get method is required
to return a java.lang.util.List list of values, one value for each key that is in the key
list. The first value that is returned in the value list corresponds to the first key in
the key list, the second value returned in the value list corresponds to the second
key in the key list, and so on. If the loader does not find the value for a key in the
key list, the Loader is required to return the special KEY_NOT_FOUND value
object that is defined in the Loader interface. Because a backing map can be
configured to allow null as a valid value, it is very important for the Loader to
return the special KEY_NOT_FOUND object when the Loader cannot find the key.
This special value allows the backing map to distinguish between a null value and
a value that does not exist because the key was not found. If a backing map does
not support null values, a Loader that returns a null value instead of the
KEY_NOT_FOUND object for a key that does not exist results in an exception.

The forUpdate argument tells the Loader if the application called a get method on
the map or a getForUpdate method on the map. See the ObjectMap interface in the
API documentation for more information. The Loader is responsible for
implementing a concurrency control policy that controls concurrent access to the
persistent store. For example, many relational database management systems
support the for update syntax on the SQL select statement that is used to read data
from a relational table. The Loader can choose to use the for update syntax on the
SQL select statement based on whether boolean true is passed as the argument
value for the forUpdate parameter of this method. Typically, the Loader uses the
for update syntax only when the pessimistic concurrency control policy is used.
For an optimistic concurrency control, the Loader never uses for update syntax on
the SQL select statement. The Loader is responsible to decide to use the forUpdate
argument based on the concurrency control policy that is being used by the
Loader.

For an explanation of the txid parameter, see “TransactionCallback plug-in” on
page 148.

batchUpdate method

The batchUpdate method is important on the Loader interface. This method is
called whenever the eXtreme Scale needs to apply all the current changes to the
Loader. The Loader is given a list of changes for the selected Map. The changes are
iterated and applied to the backend. The method receives the current TxID value
and the changes to apply. The following sample iterates over the set of changes
and batches three Java database connectivity (JDBC) statements, one with insert,
another with update, and one with delete.
import java.util.Collection;
import java.util.Map;
import java.sql.PreparedStatement;
import java.sql.SQLException;
import com.ibm.websphere.objectgrid.TxID;
import com.ibm.websphere.objectgrid.plugins.Loader;
import com.ibm.websphere.objectgrid.plugins.LoaderException;
import com.ibm.websphere.objectgrid.plugins.LogElement;

160 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

import com.ibm.websphere.objectgrid.plugins.LogSequence;

public void batchUpdate(TxID tx, LogSequence sequence) throws LoaderException {
// Get a SQL connection to use.
Connection conn = getConnection(tx);
try {

// Process the list of changes and build a set of prepared
// statements for executing a batch update, insert, or delete
// SQL operation.
Iterator iter = sequence.getPendingChanges();
while (iter.hasNext()) {

LogElement logElement = (LogElement) iter.next();
Object key = logElement.getKey();
Object value = logElement.getCurrentValue();
switch (logElement.getType().getCode()) {
case LogElement.CODE_INSERT:

buildBatchSQLInsert(tx, key, value, conn);
break;

case LogElement.CODE_UPDATE:
buildBatchSQLUpdate(tx, key, value, conn);
break;

case LogElement.CODE_DELETE:
buildBatchSQLDelete(tx, key, conn);
break;

}
}
// Execute the batch statements that were built by above loop.
Collection statements = getPreparedStatementCollection(tx, conn);
iter = statements.iterator();
while (iter.hasNext()) {

PreparedStatement pstmt = (PreparedStatement) iter.next();
pstmt.executeBatch();

}
} catch (SQLException e) {

LoaderException ex = new LoaderException(e);
throw ex;

}
}

The preceding sample illustrates the high level logic of processing the LogSequence
argument, but the details of how a SQL insert, update, or delete statement is built
are not illustrated. Some of the key points that are illustrated include:
v The getPendingChanges method is called on the LogSequence argument to

obtain an iterator over the list of LogElements that the Loader needs to process.
v The LogElement.getType().getCode() method is used to determine if the

LogElement is for a SQL insert, update, or delete operation.
v An SQLException exception is caught and is chained to a LoaderException

exception that prints to report that an exception occurred during the batch
update.

v JDBC batch update support is used to minimize the number of queries to the
backend that must be made.

preloadMap method

During the eXtreme Scale initialization, each backing map that is defined is
initialized. If a Loader is plugged into a backing map, the backing map invokes the
preloadMap method on the Loader interface to allow the loader to prefetch data
from its back end and load the data into the map. The following sample assumes
the first 100 rows of an Employee table is read from the database and is loaded
into the map. The EmployeeRecord class is an application-provided class that
holds the employee data that is read from the employee table.

Note: This sample fetches all the data from database and then insert them into the
base map of one partition. In a real-world distributed eXtreme Scale deployment
scenario, data should be distributed into all the partitions. Refer to “Client-based
JPA preload utility programming” on page 182 for more information.
import java.sql.PreparedStatement;
import java.sql.SQLException;
import com.ibm.websphere.objectgrid.Session;
import com.ibm.websphere.objectgrid.TxID;
import com.ibm.websphere.objectgrid.plugins.Loader;

Chapter 4. System APIs and plug-ins 161

import com.ibm.websphere.objectgrid.plugins.LoaderException

public void preloadMap(Session session, BackingMap backingMap) throws LoaderException {
boolean tranActive = false;
ResultSet results = null;
Statement stmt = null;
Connection conn = null;
try {

session.beginNoWriteThrough();
tranActive = true;
ObjectMap map = session.getMap(backingMap.getName());
TxID tx = session.getTxID();
// Get a auto−commit connection to use that is set to
// a read committed isolation level.
conn = getAutoCommitConnection(tx);
// Preload the Employee Map with EmployeeRecord
// objects. Read all Employees from table, but
// limit preload to first 100 rows.
stmt = conn.createStatement();
results = stmt.executeQuery(SELECT_ALL);
int rows = 0;
while (results.next() && rows < 100) {

int key = results.getInt(EMPNO_INDEX);
EmployeeRecord emp = new EmployeeRecord(key);
emp.setLastName(results.getString(LASTNAME_INDEX));
emp.setFirstName(results.getString(FIRSTNAME_INDEX));
emp.setDepartmentName(results.getString(DEPTNAME_INDEX));
emp.updateSequenceNumber(results.getLong(SEQNO_INDEX));
emp.setManagerNumber(results.getInt(MGRNO_INDEX));
map.put(new Integer(key), emp);
++rows;

}
// Commit the transaction.
session.commit();
tranActive = false;

} catch (Throwable t) {
throw new LoaderException("preload failure: " + t, t);

} finally {
if (tranActive) {

try {
session.rollback();

} catch (Throwable t2) {
// Tolerate any rollback failures and
// allow original Throwable to be thrown.

}
}
// Be sure to clean up other databases resources here
// as well such a closing statements, result sets, etc.

}
}

This sample illustrates the following key points:
v The preloadMap backing map uses the Session object that is passed to it as the

session argument.
v The Session.beginNoWriteThrough method is used to begin the transaction

instead of the begin method.
v The Loader cannot be called for each put operation that occurs in this method

for loading the map.
v The Loader can map columns of the employee table to a field in the

EmployeeRecord Java object. The Loader catches all throwable exceptions that
occur and throws a LoaderException exception with the caught throwable
exception chained to it.

v The finally block ensures that any throwable exception that occurs between the
time the beginNoWriteThrough method is called and the commit method is
called cause the finally block to roll back the active transaction. This action is
critical to ensure that any transaction that has been started by the preloadMap
method is completed before returning to the caller. The finally block is a good
place to perform other cleanup actions that might be needed, like closing the
Java Database Connectivity (JDBC) connection and other JDBC objects.

The preloadMap sample is using a SQL select statement that selects all rows of the
table. In your application-provided Loader, you might need to set one or more
Loader properties to control how much of the table needs to be preloaded into the
map.

162 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

Because the preloadMap method is only called one time during the BackingMap
initialization, it is also a good place to run the one time Loader initialization code.
Even if a Loader chooses not to prefetch data from the backend and load the data
into the map, it probably needs to perform some other one time initialization to
make other methods of the Loader more efficient. The following example illustrates
caching the TransactionCallback object and OptimisticCallback object as instance
variables of the Loader so that the other methods of the Loader do not have to
make method calls to get access to these objects. This caching of the ObjectGrid
plug-in values can be performed because after the BackingMap is initialized, the
TransactionCallback and the OptimisticCallback objects cannot be changed or
replaced. It is acceptable to cache these object references as instance variables of
the Loader.
import com.ibm.websphere.objectgrid.Session;
import com.ibm.websphere.objectgrid.BackingMap;
import com.ibm.websphere.objectgrid.plugins.OptimisticCallback;
import com.ibm.websphere.objectgrid.plugins.TransactionCallback;

// Loader instance variables.
MyTransactionCallback ivTcb; // MyTransactionCallback

// extends TransactionCallback
MyOptimisticCallback ivOcb; // MyOptimisticCallback

// implements OptimisticCallback
// ...
public void preloadMap(Session session, BackingMap backingMap) throws LoaderException
[Replication programming]

// Cache TransactionCallback and OptimisticCallback objects
// in instance variables of this Loader.
ivTcb = (MyTransactionCallback) session.getObjectGrid().getTransactionCallback();
ivOcb = (MyOptimisticCallback) backingMap.getOptimisticCallback();
// The remainder of preloadMap code (such as shown in prior example).

}

For information about preloading and recoverable preloading as it pertains to
replication failover, see the information about replication in the Product Overview.

Loaders with entity maps

If the loader is plugged into an entity map, the loader must handle tuple objects.
Tuple objects are a special entity data format. The loader must conversion data
between tuple and other data formats. For example, the get method returns a list
of values that correspond to the set of keys that are passed in to the method. The
passed-in keys are in the type of Tuple, says key tuples. Assuming that the loader
persists the map with a database using JDBC, the get method must convert each
key tuple into a list of attribute values that correspond to the primary key columns
of the table that is mapped to the entity map, run the SELECT statement with the
WHERE clause that uses converted attribute values as criteria to fetch data from
database, and then convert the returned data into value tuples. The get method
gets data from the database and converts the data into value tuples for passed-in
key tuples, and then returns a list of value tuples correspond to the set of tuple
keys that are passed in to the caller. The get method can perform one SELECT
statement to fetch all data at one time, or run a SELECT statement for each key
tuple. For programming details that show how to use the Loader when the data is
store using an entity manager, see “Using a loader with entity maps and tuples”
on page 168.

Chapter 4. System APIs and plug-ins 163

Related tasks

“Troubleshooting loaders” on page 274
Use this information to troubleshoot issues with your database loaders.
Related reference

“JPA loader programming considerations”
A Java Persistence API (JPA) Loader is a loader plug-in implementation that uses
JPA to interact with the database. Use the following considerations when you
develop an application that uses a JPA loader.

JPA loader programming considerations
A Java Persistence API (JPA) Loader is a loader plug-in implementation that uses
JPA to interact with the database. Use the following considerations when you
develop an application that uses a JPA loader.

eXtreme Scale entity and JPA entity

You can designate any POJO class as an eXtreme Scale entity using eXtreme Scale
entity annotations, XML configuration, or both. You can also designate the same
POJO class as a JPA entity using JPA entity annotations, XML configuration, or
both.

eXtreme Scale entity: An eXtreme Scale entity represents persistent data that is
stored in ObjectGrid maps. An entity object is transformed into a key tuple and a
value tuple, which are then stored as key-value pairs in the maps. A tuple is an
array of primitive attributes.

JPA entity: A JPA entity represents persistent data that is stored in a relational
database automatically using container-managed persistence. The data is persisted
in some form of a data storage system in the appropriate form, such as database
tuples in a database.

When an eXtreme Scale entity is persisted, its relations are stored in other entity
maps. For example, when you are persisting a Consumer entity with a
one-to-many relation to a ShippingAddress entity, if cascade-persist is enabled, the
ShippingAddress entity is stored in the shippingAddress map in tuple format. If
you are persisting a JPA entity, the related JPA entities are also persisted to
database tables if cascade-persist is enabled. When a POJO class is designated as
both an eXtreme Scale entity and a JPA entity, the data can be persisted to both
ObjectGrid entity maps and databases. Common uses follow:
v Preload scenario: An entity is loaded from a database using a JPA provider and

persists it into ObjectGrid entity maps.
v Loader scenario: A Loader implementation is plugged in for the ObjectGrid

entity maps so an entity stored in ObjectGrid entity maps can be persisted into
or loaded from a database using JPA providers.

It is also common that a POJO class is designated as a JPA entity only. In that case,
what is stored in the ObjectGrid maps are the POJO instances, versus the entity
tuples in the ObjectGrid entity case.

Application design considerations for entity maps

When you are plugging in a JPALoader interface, the object instances are directly
stored in the ObjectGrid maps.

164 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

However, you are when plugging in a JPAEntityLoader, the entity class is
designated as both an eXtreme Scale entity and a JPA entity. In that case, treat this
entity as if it has two persistent stores: the ObjectGrid entity maps and the JPA
persistence store. The architecture becomes more complicated than the JPALoader
case.

For more information about the JPAEntityLoader plug-in and application design
considerations, see the information about the JPAEntityLoader plug-in in the
Administration Guide. This information can also help if you plan to implement your
own loader for the entity maps.

Performance considerations

Ensure that you set the proper eager or lazy fetch type for relationships. For
example, a bidirectional one-to-many relationship Consumer to ShippingAddress,
with OpenJPA to help explain the performance differences. In this example, a JPA
query attempts select o from Consumer o where . . . to do a bulk load, and
also load all related ShippingAddress objects. A one-to-many relationship defined
in the Consumer class follows:
@Entity
public class Consumer implements Serializable {

@OneToMany(mappedBy="consumer",cascade=CascadeType.ALL, fetch =FetchType.EAGER)
ArrayList <ShippingAddress> addresses;

The many-to-one relation consumer defined in the ShippingAddress class follows:
@Entity
public class ShippingAddress implements Serializable{

@ManyToOne(fetch=FetchType.EAGER)
Consumer consumer;

}

If the fetch types of both relationships are configured as eager, OpenJPA uses
N+1+1 queries to get all the Consumer objects and ShippingAddress objects, where
N is the number of ShippingAddress objects. However if the ShippingAddress is
changed to use lazy fetch type as follows, it only takes two queries to get all the
data.
@Entity
public class ShippingAddress implements Serializable{

@ManyToOne(fetch=FetchType.LAZY)
Consumer consumer;

}

Although the query returns the same results, having a lower number of queries
significantly decreases interaction with the database, which can increase
application performance.

Chapter 4. System APIs and plug-ins 165

Related concepts

“Client-based JPA preload utility overview” on page 180
The client-based Java Persistence API (JPA) preload utility loads data into eXtreme
Scale backing maps using a client connection to the ObjectGrid.
Loaders overview
“Using a Loader” on page 157
With an eXtreme Scale Loader plug-in, an ObjectGrid map can behave as a
memory cache for data that is typically kept in a persistent store on either the
same system or some other system. Typically, a database or file system is used as
the persistent store. A remote Java virtual machine (JVM) can also be used as the
source of data, allowing hub-based caches to be built using ObjectGrid. A loader
has the logic for reading and writing data to and from a persistent store.
“Writing a loader” on page 159
You can write your own loader plug-in implementation in your applications, which
must follow the common WebSphere eXtreme Scale plug-in conventions.
Related tasks

“Troubleshooting loaders” on page 274
Use this information to troubleshoot issues with your database loaders.

JPAEntityLoader plug-in
The JPAEntityLoader plug-in is a built-in Loader implementation that uses Java
Persistence API (JPA) to communicate with the database when you are using the
EntityManager API. When you are using the ObjectMap API, use the JPALoader
loader.

Loader details

Use the JPALoader plug-in when you are storing data using the ObjectMap API.
Use the JPAEntityLoader plug-in when you are storing data using the
EntityManager API.

Loaders provide two main functions:
1. get: In the get method, the JPAEntityLoader plug-in first calls the

javax.persistence.EntityManager.find(Class entityClass, Object key) method to
find the JPA entity. Then the plug-in projects this JPA entity into entity tuples.
During the projection, both the tuple attributes and the association keys are
stored in the value tuple. After processing each key, the get method returns a
list of entity value tuples.

2. batchUpdate: The batchUpdate method takes a LogSequence object that
contains a list of LogElement objects. Each LogElement object contains a key
tuple and a value tuple. To interact with the JPA provider, you must first find
the eXtreme Scale entity based on the key tuple. Based on the LogElement type,
you run the following JPA calls:
v insert: javax.persistence.EntityManager.persist(Object o)
v update: javax.persistence.EntityManager.merge(Object o)
v remove: javax.persistence.EntityManager.remove(Object o)

A LogElement with type update makes the JPAEntityLoader call the
javax.persistence.EntityManager.merge(Object o) method to merge the entity.
However, an update type LogElement might be the result of either a
com.ibm.websphere.objectgrid.em.EntityManager.merge(object o) call or an
attribute change of the eXtreme Scale EntityManager managed-instance. See the
following example:

166 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

com.ibm.websphere.objectgrid.em.EntityManager em = og.getSession().getEntityManager();
em.getTransaction().begin();
Consumer c1 = (Consumer) em.find(Consumer.class, c.getConsumerId());
c1.setName("New Name");
em.getTransaction().commit();

In this example, an update type LogElement is sent to the JPAEntityLoader of the
map consumer. The javax.persistence.EntityManager.merge(Object o) method is
called to the JPA entity manager instead of an attribute update to the JPA-managed
entity. Because of this changed behavior, some limitations exist with using this
programming model.

Application design rules

Entities have relationships with other entities. Designing an application with
relationships involved and with JPAEntityLoader plugged in requires additional
considerations. The application should follow the following four rules, described in
the following sections.

Limited relationship depth support

The JPAEntityLoader is only supported when using entities without any
relationships or entities with single-level relationships. Relationships with more
than one level, such as Company > Department > Employee are not supported.

One loader per map

Using the Consumer-ShippingAddress entity relationships as an example, when
you load a consumer with eager fetch enabled, you could load all the related
ShippingAddress objects. When you persist or merge a Consumer object, you could
persist or merge related ShippingAddress objects if cascade-persist or
cascade-merge is enabled.

You cannot plug in a loader for the root entity map which stores the Consumer
entity tuples. You must configure a loader for each entity map.

Same cascade type for JPA and eXtreme Scale

Reconsider the scenario where the entity Consumer has a one-to-many relationship
with ShippingAddress. You can look at the scenario where cascade-persist is
enabled for this relationship. When a Consumer object is persisted into eXtreme
Scale, the associated N number of ShippingAddress objects are also persisted into
eXtreme Scale.

A persist call of the Consumer object with a cascade-persist relationship to
ShippingAddress translates to one
javax.persistence.EntityManager.persist(consumer) method call and N
javax.persistence.EntityManager.persist(shippingAddress) method calls by the
JPAEntityLoader layer. However, these N extra persist calls to ShippingAddress
objects are unnecessary because of the cascade-persist setting from the JPA
provider point of view. To solve this problem, eXtreme Scale provides a new
method isCascaded on the LogElement interface. The isCascaded method indicates
whether the LogElement is a result of an eXtreme Scale EntityManager cascade
operation. In this example, the JPAEntityLoader of the ShippingAddress map
receives N LogElement objects because of the cascade persist calls. The
JPAEntityLoader finds out that the isCascaded method returns true and then

Chapter 4. System APIs and plug-ins 167

ignores them without making any JPA calls. Therefore, from a JPA point of view,
only one javax.persistence.EntityManager.persist(consumer) method call is received.

The same behavior is exhibited if you merge an entity or remove an entity with
cascade enabled. The cascaded operations are ignored by the JPAEntityLoader
plug-in.

The design of the cascade support is to replay the eXtreme Scale EntityManager
operations to the JPA providers. These operations include persist, merge, and
remove operations. To enable cascade support, verify that the cascade setting for
the JPA and the eXtreme Scale EntityManager are the same.

Use entity update with caution

As previously described, the design of the cascade support is to replay eXtreme
Scale EntityManager operations to the JPA providers. If your application calls the
ogEM.persist(consumer) method to the eXtreme Scale EntityManager, even the
associated ShippingAddress objects are persisted because of the cascade-persist
setting, and the JPAEntityLoader only calls the jpAEM.persist(consumer) method to
the JPA providers.

However, if your application updates a managed entity, this update translates to a
JPA merge call by the JPAEntityLoader plug-in. In this scenario, support for
multiple levels of relationships and key associations is not guaranteed. In this case,
the best practice is to use the javax.persistence.EntityManager.merge(o) method
instead of updating a managed entity.

Using a loader with entity maps and tuples
The entity manager converts all entity objects into tuple objects before they are
stored in an WebSphere eXtreme Scale map. Every entity has a key tuple and a
value tuple. This key-value pair is stored in the associated eXtreme Scale map for
the entity. When you are using an eXtreme Scale map with a loader, the loader
must interact with the tuple objects.

Overview

eXtreme Scale includes loader plug-ins that simplify integration with relational
databases. The Java Persistence API (JPA) Loaders use a Java Persistence API to
interact with the database and create the entity objects. The JPA loaders are
compatible with eXtreme Scale entities.

Tuples

A tuple contains information about the attributes and associations of an entity.
Primitive values are stored using their primitive wrappers. Other supported object
types are stored in their native format. Associations to other entities are stored as a
collection of key tuple objects that represent the keys of the target entities.

Each attribute or association is stored using a zero-based index. You can retrieve
the index of each attribute using the getAttributePosition or getAssociationPosition
methods. After the position is retrieved, it remains unchanged for the duration of
the eXtreme Scale life cycle. The position can change when the eXtreme Scale is
restarted. The setAttribute, setAssociation and setAssociations methods are used to
update the elements in the tuple.

168 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

Attention: When you are creating or updating tuple objects, update every
primitive field with a non-null value. Primitive values such as int should not be
null. If you do not change the value to a default, poor performance issues can
result, also affecting fields marked with the @Version annotation or version
attribute in the entity descriptor XML file.

The following example further explains how to process tuples. For more
information about defining entities for this example, see the information about the
order entity schema, which is in the entity manager tutorial in the Product
Overview.WebSphere eXtreme Scale is configured for using loaders with each of the
entities. Additionally, only the Order entity is taken, and this specific entity has a
many-to-one relationship with the Customer entity. The attribute name is customer,
and it has a one-to-many relationship with the OrderLine entity.

Use the Projector to build Tuple objects automatically from entities. Using the
Projector can simplify loaders when you are using an object-relational mapping
utility such as Hibernate or JPA.

order.java
@Entity
public class Order
{

@Id String orderNumber;
java.util.Date date;
@OneToOne(cascade=CascadeType.PERSIST) Customer customer;
@OneToMany(cascade=CascadeType.ALL, mappedBy="order") @OrderBy("lineNumber") List<OrderLine> lines;

}

customer.java
@Entity
public class Customer {

@Id String id;
String firstName;
String surname;
String address;
String phoneNumber;

}

orderLine.java
@Entity
public class OrderLine
{

@Id @ManyToOne(cascade=CascadeType.PERSIST) Order order;
@Id int lineNumber;
@OneToOne(cascade=CascadeType.PERSIST) Item item;
int quantity;
double price;

}

A OrderLoader class that implements the Loader interface is shown in the
following code. The following example assumes that an associated
TransactionCallback plug-in is defined.

orderLoader.java
public class OrderLoader implements com.ibm.websphere.objectgrid.plugins.Loader {

private EntityMetadata entityMetaData;
public void batchUpdate(TxID txid, LogSequence sequence)

throws LoaderException, OptimisticCollisionException {
...
}
public List get(TxID txid, List keyList, boolean forUpdate)

throws LoaderException {
...
}

Chapter 4. System APIs and plug-ins 169

public void preloadMap(Session session, BackingMap backingMap)
throws LoaderException {

this.entityMetaData=backingMap.getEntityMetadata();
}

}

The instance variable entityMetaData is initialized during the preLoadMap method
call from the eXtreme Scale. The entityMetaData variable is not null if the Map is
configured to use entities. Otherwise, the value is null.

The batchUpdate method

The batchUpdate method provides the ability to know what action the application
intended to perform. Based on an insert, update or a delete operation, a connection
can be opened to the database and the work performed. Because the key and
values are of type Tuple, they must be transformed so the values make sense on
the SQL statement.

The ORDER table was created with the following Data Definition Language (DDL)
definition, as shown in the following code:
CREATE TABLE ORDER (ORDERNUMBER VARCHAR(250) NOT NULL, DATE TIMESTAMP, CUSTOMER_ID VARCHAR(250))
ALTER TABLE ORDER ADD CONSTRAINT PK_ORDER PRIMARY KEY (ORDERNUMBER)

The following code demonstrates how to convert a Tuple to an Object:
public void batchUpdate(TxID txid, LogSequence sequence)

throws LoaderException, OptimisticCollisionException {
Iterator iter = sequence.getPendingChanges();
while (iter.hasNext()) {

LogElement logElement = (LogElement) iter.next();
Object key = logElement.getKey();
Object value = logElement.getCurrentValue();

switch (logElement.getType().getCode()) {
case LogElement.CODE_INSERT:

1) if (entityMetaData!=null) {

// The order has just one key orderNumber
2) String ORDERNUMBER=(String) getKeyAttribute("orderNumber", (Tuple) key);
// Get the value of date
3) java.util.Date unFormattedDate = (java.util.Date) getValueAttribute("date",(Tuple)value);
// The values are 2 associations. Lets process customer because
// the our table contains customer.id as primary key
4) Object[] keys= getForeignKeyForValueAssociation("customer","id",(Tuple) value);

//Order to Customer is M to 1. There can only be 1 key
5) String CUSTOMER_ID=(String)keys[0];
// parse variable unFormattedDate and format it for the database as formattedDate
6) String formattedDate = "2007-05-08-14.01.59.780272"; // formatted for DB2
// Finally, the following SQL statement to insert the record
7) //INSERT INTO ORDER (ORDERNUMBER, DATE, CUSTOMER_ID) VALUES(ORDERNUMBER,formattedDate, CUSTOMER_ID)

}
break;

case LogElement.CODE_UPDATE:
break;

case LogElement.CODE_DELETE:
break;

}
}

}
// returns the value to attribute as stored in the key Tuple
private Object getKeyAttribute(String attr, Tuple key) {

//get key metadata
TupleMetadata keyMD = entityMetaData.getKeyMetadata();
//get position of the attribute
int keyAt = keyMD.getAttributePosition(attr);
if (keyAt > -1) {

return key.getAttribute(keyAt);
} else { // attribute undefined

throw new IllegalArgumentException("Invalid position index for "+attr);
}

}
// returns the value to attribute as stored in the value Tuple

private Object getValueAttribute(String attr, Tuple value) {
//similar to above, except we work with value metadata instead
TupleMetadata valueMD = entityMetaData.getValueMetadata();

170 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

int keyAt = valueMD.getAttributePosition(attr);
if (keyAt > -1) {

return value.getAttribute(keyAt);
} else {

throw new IllegalArgumentException("Invalid position index for "+attr);
}

}
// returns an array of keys that refer to association.

private Object[] getForeignKeyForValueAssociation(String attr, String fk_attr, Tuple value) {
TupleMetadata valueMD = entityMetaData.getValueMetadata();
Object[] ro;

int customerAssociation = valueMD.getAssociationPosition(attr);
TupleAssociation tupleAssociation = valueMD.getAssociation(customerAssociation);

EntityMetadata targetEntityMetaData = tupleAssociation.getTargetEntityMetadata();

Tuple[] customerKeyTuple = ((Tuple) value).getAssociations(customerAssociation);

int numberOfKeys = customerKeyTuple.length;
ro = new Object[numberOfKeys];

TupleMetadata keyMD = targetEntityMetaData.getKeyMetadata();
int keyAt = keyMD.getAttributePosition(fk_attr);
if (keyAt < 0) {

throw new IllegalArgumentException("Invalid position index for " + attr);
}
for (int i = 0; i < numberOfKeys; ++i) {

ro[i] = customerKeyTuple[i].getAttribute(keyAt);
}

return ro;

}

1. Ensure that entityMetaData is not null, which implies that the key and value
cache entries are of type Tuple. From the entityMetaData, Key TupleMetaData
is retrieved, which really reflects only the key part of Order metadata.

2. Process the KeyTuple and get the value of Key Attribute orderNumber
3. Process the ValueTuple and get the value of attribute date
4. Process the ValueTuple and get the value of Keys from association customer
5. Extract CUSTOMER_ID. Based on relationship, an Order can only have one

customer, we will only have one key. Hence the size of keys is 1. For simplicity,
we skipped parsing of date to correct format.

6. Because this is an insert operation, the SQL statement is passed onto the data
source connection to complete the insert operation.

Transaction demarcation and access to database is covered in “Writing a loader” on
page 159.

The get method

If the key is not found in the cache, call the get method in the Loader plug-in to
find the key.

The key is a Tuple. The first step is to convert the Tuple to primitive values that
can be passed onto the SELECT SQL statement. After all the attributes are retrieved
from the database, you must convert into Tuples. The following code demonstrates
the Order class.
public List get(TxID txid, List keyList, boolean forUpdate) throws LoaderException {

System.out.println("OrderLoader: Get called");
ArrayList returnList = new ArrayList();

1) if (entityMetaData != null) {
int index=0;
for (Iterator iter = keyList.iterator(); iter.hasNext();) {

2) Tuple orderKeyTuple=(Tuple) iter.next();

// The order has just one key orderNumber
3) String ORDERNUMBERKEY = (String) getKeyAttribute("orderNumber",orderKeyTuple);

//We need to run a query to get values of
4) // SELECT CUSTOMER_ID, date FROM ORDER WHERE ORDERNUMBER=’ORDERNUMBERKEY’

5) //1) Foreign key: CUSTOMER_ID

Chapter 4. System APIs and plug-ins 171

6) //2) date
// Assuming those two are returned as

7) String CUSTOMER_ID = "C001"; // Assuming Retrieved and initialized
8) java.util.Date retrievedDate = new java.util.Date();

// Assuming this date reflects the one in database

// We now need to convert this data into a tuple before returning

//create a value tuple
9) TupleMetadata valueMD = entityMetaData.getValueMetadata();

Tuple valueTuple=valueMD.createTuple();

//add retrievedDate object to Tuple
int datePosition = valueMD.getAttributePosition("date");

10) valueTuple.setAttribute(datePosition, retrievedDate);

//Next need to add the Association
11) int customerPosition=valueMD.getAssociationPosition("customer");

TupleAssociation customerTupleAssociation =
valueMD.getAssociation(customerPosition);

EntityMetadata customerEMD = customerTupleAssociation.getTargetEntityMetadata();
TupleMetadata customerTupleMDForKEY=customerEMD.getKeyMetadata();

12) int customerKeyAt=customerTupleMDForKEY.getAttributePosition("id");

Tuple customerKeyTuple=customerTupleMDForKEY.createTuple();
customerKeyTuple.setAttribute(customerKeyAt, CUSTOMER_ID);

13) valueTuple.addAssociationKeys(customerPosition, new Tuple[] {customerKeyTuple});

14) int linesPosition = valueMD.getAssociationPosition("lines");
TupleAssociation linesTupleAssociation = valueMD.getAssociation(linesPosition);
EntityMetadata orderLineEMD = linesTupleAssociation.getTargetEntityMetadata();
TupleMetadata orderLineTupleMDForKEY = orderLineEMD.getKeyMetadata();
int lineNumberAt = orderLineTupleMDForKEY.getAttributePosition("lineNumber");
int orderAt = orderLineTupleMDForKEY.getAssociationPosition("order");

if (lineNumberAt < 0 || orderAt < 0) {
throw new IllegalArgumentException(

"Invalid position index for lineNumber or order "+
lineNumberAt + " " + orderAt);

}
15) // SELECT LINENUMBER FROM ORDERLINE WHERE ORDERNUMBER=’ORDERNUMBERKEY’

// Assuming two rows of line number are returned with values 1 and 2

Tuple orderLineKeyTuple1 = orderLineTupleMDForKEY.createTuple();
orderLineKeyTuple1.setAttribute(lineNumberAt, new Integer(1));// set Key
orderLineKeyTuple1.addAssociationKey(orderAt, orderKeyTuple);

Tuple orderLineKeyTuple2 = orderLineTupleMDForKEY.createTuple();
orderLineKeyTuple2.setAttribute(lineNumberAt, new Integer(2));// Init Key
orderLineKeyTuple2.addAssociationKey(orderAt, orderKeyTuple);

16) valueTuple.addAssociationKeys(linesPosition, new Tuple[]
{orderLineKeyTuple1, orderLineKeyTuple2 });

returnList.add(index, valueTuple);

index++;

}
}else {
// does not support tuples
}
return returnList;
}

1. The get method is called when the ObjectGrid cache could not find the key
and requests the loader to fetch. Test for entityMetaData value and proceed if
not null.

2. The keyList contains Tuples.
3. Retrieve value of attribute orderNumber.
4. Run query to retrieve date (value) and customer ID (foreign key).
5. CUSTOMER_ID is a foreign key that must be set in the association tuple.
6. The date is a value and should already be set.
7. Since this example does not perform JDBC calls, CUSTOMER_ID is assumed.
8. Since this example does not perform JDBC calls, date is assumed.
9. Create value Tuple.

10. Set the value of date into the Tuple, based on its position.

172 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

11. Order has two associations. Start with the attribute customer which refers to
the customer entity. You must have the value of ID to set in the Tuple.

12. Find the position of ID on the customer entity.
13. Set the values of the association keys only.
14. Also, lines is an association that must be set up as a group of association keys,

in the same way as you did for customer association.
15. Since you must set up keys for the lineNumber associated with this order, run

the SQL to retrieve lineNumber values.
16. Set up the association keys in the valueTuple. This completes the creation of

the Tuple that is returned to the BackingMap.

This topic offers the steps create tuples, and a description of the Order entity only.
Complete similar steps for the other entities, and the entire process that is tied
together with the TransactionCallback plug-in. See “TransactionCallback plug-in”
on page 148 for details.

Writing a loader with a replica preload controller
A Loader with a replica preload controller is a Loader that implements the
ReplicaPreloadController interface in addition to the Loader interface.

Overview

The ReplicaPreloadController interface is designed to provide a way for a replica
that becomes the primary shard to know whether the previous primary shard has
completed the preload process. If the preload is partially completed, the
information to pick up where the previous primary left is provided. With the
ReplicaPreloadController interface implementation, a replica that becomes the
primary continues the preload process where the previous primary left and
continues to finish the overall preload.

In a distributed WebSphere eXtreme Scale environment, a map can have replicas
and might preload large volume of data during initialization. The preload is a
Loader activity and only occurs in the primary map during initialization. The
preload might take a long time to complete if a large volume of data is preloaded.
If the primary map has completed large portion of preload data, but is stopped for
unknown reason during initialization, a replica becomes the primary. In this
situation, the preloaded data that was completed by the previous primary is lost
because the new primary normally performs an unconditional preload. With an
unconditional preload, the new primary starts the preload process from the
beginning and the previous preloaded data is ignored. If you want the new
primary to pick up where the previous primary left during preload process,
provide a Loader that implements the ReplicaPreloadController interface. For more
information see the API documentation.

For information about Loaders, see the information about loaders in the
Administration Guide. If you are interested in writing a regular Loader plug-in, see
“Writing a loader” on page 159.

The ReplicaPreloadController interface has the following definition:
public interface ReplicaPreloadController
{

public static final class Status
{

static public final Status PRELOADED_ALREADY = new Status(K_PRELOADED_ALREADY);
static public final Status FULL_PRELOAD_NEEDED = new Status(K_FULL_PRELOAD_NEEDED);
static public final Status PARTIAL_PRELOAD_NEEDED = new Status(K_PARTIAL_PRELOAD_NEEDED);

Chapter 4. System APIs and plug-ins 173

}

Status checkPreloadStatus(Session session, BackingMap bmap);
}

The following sections discuss some of the methods of the Loader and
ReplicaPreloadController interface.

checkPreloadStatus method

When a Loader implements ReplicaPreloadController interface, the
checkPreloadStatus method is called before the preloadMap method during map
initialization. The return status of this method determines if the preloadMap
method is called. If this method returns Status#PRELOADED_ALREADY, the preload
method is not called. Otherwise, the preload method runs. Because of this
behavior, this method should serve as the Loader initialization method. You must
initialize the Loader properties in this method. This method must return the correct
status, or the preload might not work as expected.

public Status checkPreloadStatus(Session session, BackingMap backingMap) {
// When a loader implements ReplicaPreloadController interface, this method

// will be called before preloadMap method during map initialization.
// Whether the preloadMap method will be called depends on teh returned status of this method.
// So, this method also serve as Loader’s initialization method.
// This method has to return the right staus, otherwise the preload may not work as expected.

// Note: must initialize this loader instance here.
ivOptimisticCallback = backingMap.getOptimisticCallback();
ivBackingMapName = backingMap.getName();
ivPartitionId = backingMap.getPartitionId();
ivPartitionManager = backingMap.getPartitionManager();
ivTransformer = backingMap.getObjectTransformer();
preloadStatusKey = ivBackingMapName + "_" + ivPartitionId;

try {
// get the preloadStatusMap to retrieve preload status that could be set by other JVMs..
ObjectMap preloadStatusMap = session.getMap(ivPreloadStatusMapName);

// retrieve last recorded preload data chunk index.
Integer lastPreloadedDataChunk = (Integer) preloadStatusMap.get(preloadStatusKey);

if (lastPreloadedDataChunk == null) {
preloadStatus = Status.FULL_PRELOAD_NEEDED;

} else {
preloadedLastDataChunkIndex = lastPreloadedDataChunk.intValue();
if (preloadedLastDataChunkIndex == preloadCompleteMark) {

preloadStatus = Status.PRELOADED_ALREADY;
} else {

preloadStatus = Status.PARTIAL_PRELOAD_NEEDED;
}

}

System.out.println("TupleHeapCacheWithReplicaPreloadControllerLoader.checkPreloadStatus()
-> map = " + ivBackingMapName + ", preloadStatusKey = " + preloadStatusKey

+ ", retrieved lastPreloadedDataChunk =" + lastPreloadedDataChunk + ",
determined preloadStatus = "

+ getStatusString(preloadStatus));

} catch (Throwable t) {
t.printStackTrace();

}

return preloadStatus;
}

preloadMap method

Running the preloadMap method depends on the returned result from
checkPreloadStatus method. If the preloadMap method is called, it typically must
retrieve preload status information from designated preload status map and
determine how to proceed. Ideally, the preloadMap method should know if the

174 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

preload is partially complete and exactly where to start. During the data preload,
the preloadMap method should update the preload status on the designated
preload status map. The preload status that is stored in the preload status map is
retrieved by the checkPreloadStatus method when it needs to check the preload
status.

public void preloadMap(Session session, BackingMap backingMap) throws LoaderException {
EntityMetadata emd = backingMap.getEntityMetadata();
if (emd != null && tupleHeapPreloadData != null) {

// The getPreLoadData method is similar to fetching data from database.
// These data will be push into cache as preload process.
ivPreloadData = tupleHeapPreloadData.getPreLoadData(emd);

ivOptimisticCallback = backingMap.getOptimisticCallback();
ivBackingMapName = backingMap.getName();
ivPartitionId = backingMap.getPartitionId();
ivPartitionManager = backingMap.getPartitionManager();
ivTransformer = backingMap.getObjectTransformer();
Map preloadMap;

if (ivPreloadData != null) {
try {

ObjectMap map = session.getMap(ivBackingMapName);

// get the preloadStatusMap to record preload status.
ObjectMap preloadStatusMap = session.getMap(ivPreloadStatusMapName);

// Note: when this preloadMap method is invoked, the checkPreloadStatus
// has been called,
// Both preloadStatus and preloadedLastDataChunkIndex have been set.
// And the preloadStatus must be either PARTIAL_PRELOAD_NEEDED

// or FULL_PRELOAD_NEEDED that
// will require a preload again.

// If large amount of data will be preloaded, the data usually is divided into
// few chunks and the preload process will process each chunk within its own tran.
// This sample only preload few entries and assuming each entry represent a chunk.
// so that the preload process an entry in a tran to simulate chunk preloading.

Set entrySet = ivPreloadData.entrySet();
preloadMap = new HashMap();
ivMap = preloadMap;

// The dataChunkIndex represent the data chunk that is in processing
int dataChunkIndex = -1;
boolean shouldRecordPreloadStatus = false;
int numberOfDataChunk = entrySet.size();
System.out.println(" numberOfDataChunk to be preloaded = "

+ numberOfDataChunk);

Iterator it = entrySet.iterator();
int whileCounter = 0;
while (it.hasNext()) {

whileCounter++;
System.out.println("preloadStatusKey = " + preloadStatusKey + " ,

whileCounter = " + whileCounter);

dataChunkIndex++;

// if the current dataChunkIndex <= preloadedLastDataChunkIndex
// no need to process, becasue it has been preloaded by other JVM before.
// only need to process dataChunkIndex > preloadedLastDataChunkIndex
if (dataChunkIndex <= preloadedLastDataChunkIndex) {

System.out.println("ignore current dataChunkIndex = " + dataChunkIndex
+ " that has been previously preloaded.");

continue;
}

// Note: This sample simulate data chunk as an entry.
// each key represent a data chunk for simplicity.
// If the primary server or shard stopped for unknown reason, the preload status that
// indicates the progress of preload should be available in preloadStatusMap.
// A replica that become a primary can get the preload status and determine how to preload
// again.
// Note: recording preload status should be in the same tran as putting data into cache; so that
// if tran rollback or error, the recorded preload status is the actual status.

Chapter 4. System APIs and plug-ins 175

Map.Entry entry = (Entry) it.next();
Object key = entry.getKey();
Object value = entry.getValue();
boolean tranActive = false;

System.out.println("processing data chunk. map = " + this.ivBackingMapName
+ ", current dataChunkIndex = " + dataChunkIndex + ", key = " + key);

try {
shouldRecordPreloadStatus = false; // re-set to false
session.beginNoWriteThrough();
tranActive = true;

if (ivPartitionManager.getNumOfPartitions() == 1) {
// if just only 1 partition, no need to deal with partition.
// just push data into cache
map.put(key, value);
preloadMap.put(key, value);
shouldRecordPreloadStatus = true;

} else if (ivPartitionManager.getPartition(key) == ivPartitionId) {
// if map is partitioned, need to consider the partition key
// only preload data that belongs to this partition.
map.put(key, value);
preloadMap.put(key, value);
shouldRecordPreloadStatus = true;

} else {
// ignore this entry, because it does not belong to this partition.

}

if (shouldRecordPreloadStatus) {
System.out.println("record preload status. map = " + this.ivBackingMapName

+ ", preloadStatusKey = " + preloadStatusKey + ", current dataChunkIndex ="
+ dataChunkIndex);

if (dataChunkIndex == numberOfDataChunk) {
System.out.println("record preload status. map = " + this.ivBackingMapName

+ ", preloadStatusKey = " + preloadStatusKey + ", mark complete ="
+ preloadCompleteMark);

// means we are at the lastest data chunk, if commit successfully, record preload
// complete.
// at this point, the preload is considered to be done
// use -99 as special mark for preload complete status.
preloadStatusMap.get(preloadStatusKey);
// a put follow a get will become update if the get return an object,
// otherwise, it will be insert.
preloadStatusMap.put(preloadStatusKey, new Integer(preloadCompleteMark));

} else {
// record preloaded current dataChunkIndex into preloadStatusMap
// a put follow a get will become update if teh get return an object,
// otherwise, it will be insert.
preloadStatusMap.get(preloadStatusKey);
preloadStatusMap.put(preloadStatusKey, new Integer(dataChunkIndex));

}
}

session.commit();
tranActive = false;

// to simulate preloading large amount of data
// put this thread into sleep for 30 secs.
// The real app should NOT put this thread to sleep
Thread.sleep(10000);

} catch (Throwable e) {
e.printStackTrace();
throw new LoaderException("preload failed with exception: " + e, e);

} finally {
if (tranActive && session != null) {

try {
session.rollback();

} catch (Throwable e1) {
// preload ignoring exception from rollback

}
}

}
}

// at this point, the preload is considered to be done for sure
// use -99 as special mark for preload complete status.

176 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

// this is a insurance to make sure the complete mark is set.
// besides, when partitioning, each partition does not know when is its last data chunk.
// so the following block serves as the overall preload status complete reporting.
System.out.println("Overall preload status complete -> record preload status. map = "

+ this.ivBackingMapName + ", preloadStatusKey = " + preloadStatusKey + ", mark complete ="
+ preloadCompleteMark);

session.begin();
preloadStatusMap.get(preloadStatusKey);
// a put follow a get will become update if teh get return an object,
// otherwise, it will be insert.
preloadStatusMap.put(preloadStatusKey, new Integer(preloadCompleteMark));
session.commit();

ivMap = preloadMap;
} catch (Throwable e) {

e.printStackTrace();
throw new LoaderException("preload failed with exception: " + e, e);

}
}

}
}

Preload status map

You must use a preload status map to support the ReplicaPreloadController
interface implementation. The preloadMap method should always check the
preload status stored in the preload status map first and update the preload status
in the preload status map whenever it pushes data into the cache. The
checkPreloadStatus method can retrieve the preload status from preload status
map, determine the preload status, and return the status to its caller. The preload
status map should be in the same mapSet as other maps that have replica preload
controller Loaders.

LogElement and LogSequence
When an application is making changes to a Map during a transaction, a
LogSequence object tracks those changes. If the application changes an entry in the
map, a corresponding LogElement object provides the details of the change.

Loaders are given a LogSequence object for a particular map whenever an
application calls for a flush or commit to the transaction. The Loader iterates over
the LogElement objects within the LogSequence object and applies each
LogElement object to the backend.

ObjectGridEventListener listeners that are registered with an ObjectGrid also use
LogSequence objects. These listeners are given a LogSequence object for each map
in a committed transaction. Applications can use these listeners to wait for certain
entries to change, like a trigger in a conventional database.

The following log-related interfaces or classes are provided by the eXtreme Scale
framework:
v com.ibm.websphere.objectgrid.plugins.LogElement
v com.ibm.websphere.objectgrid.plugins.LogSequence
v com.ibm.websphere.objectgrid.plugins.LogSequenceFilter
v com.ibm.websphere.objectgrid.plugins.LogSequenceTransformer

Chapter 4. System APIs and plug-ins 177

LogElement interface

A LogElement represents an operation on an entry during a transaction. A
LogElement object has several methods to get its various attributes. The most
commonly used attributes are the type and the current value attributes fetched by
getType() and getCurrentValue().

The type is represented by one of the constants defined in the LogElement
interface: INSERT, UPDATE, DELETE, EVICT, FETCH, or TOUCH.

The current value represents the new value for the operation if it is INSERT,
UPDATE or FETCH. If the operation is TOUCH, DELETE, or EVICT, then the
current value is null. This value can be cast to ValueProxyInfo when a
ValueInterface is in use.

See the API documentation for more details on the LogElement interface.

LogSequence interface

In most transactions, operations to more than one entry in a map occur, so
multiple LogElement objects are created. You should create an object that behaves
as a composite of multiple LogElement objects. The LogSequence interface serves
this purpose by containing a list of LogElement objects.

See the API documentation for more details on the LogSequence interface.

Using LogElement and LogSequence

LogElement and LogSequence are widely used in eXtreme Scale and by ObjectGrid
plug-ins that are written by users when operations are propagated from one
component or server to another component or server. For example, a LogSequence
object can be used by the distributed ObjectGrid transaction propagation function
to propagate the changes to other servers, or it can be applied to the persistence
store by the loader. LogSequence is mainly used by the following interfaces.
v com.ibm.websphere.objectgrid.plugins.ObjectGridEventListener
v com.ibm.websphere.objectgrid.plugins.Loader
v com.ibm.websphere.objectgrid.plugins.Evictor
v com.ibm.websphere.objectgrid.Session

Loader example

This section demonstrates how the LogSequence and LogElement objects are used
in a Loader. A Loader is used to load data from and persist data into a persistent
store. The batchUpdate method of the Loader interface uses LogSequence object:
void batchUpdate(TxID txid, LogSequence sequence) throws

LoaderException, OptimisticCollisionException;

The batchUpdate method is called when an ObjectGrid needs to apply all current
changes to the Loader. The Loader is given a list of LogElement objects for the
map, encapsulated in a LogSequence object. The implementation of the
batchUpdate method must iterate over the changes and apply them to the
backend. The following code snippet demonstrates how a Loader uses a
LogSequence object. The snippet iterates over the set of changes and builds up
three batch Java database connectivity (JDBC) statements: inserts, updates, and
deletes:

178 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

public void batchUpdate(TxID tx, LogSequence sequence) throws LoaderException
{

// Get a SQL connection to use.
Connection conn = getConnection(tx);
try
{
// Process the list of changes and build a set of prepared
// statements for executing a batch update, insert, or delete
// SQL operations. The statements are cached in stmtCache.
Iterator iter = sequence.getPendingChanges();
while (iter.hasNext())
{

LogElement logElement = (LogElement)iter.next();
Object key = logElement.getCacheEntry().getKey();
Object value = logElement.getCurrentValue();
switch (logElement.getType().getCode())
{

case LogElement.CODE_INSERT:
buildBatchSQLInsert(key, value, conn);
break;

case LogElement.CODE_UPDATE:
buildBatchSQLUpdate(key, value, conn);
break;

case LogElement.CODE_DELETE:
buildBatchSQLDelete(key, conn);
break;

}
}
// Run the batch statements that were built by above loop.
Collection statements = getPreparedStatementCollection(tx, conn);
iter = statements.iterator();
while (iter.hasNext())
{

PreparedStatement pstmt = (PreparedStatement) iter.next();
pstmt.executeBatch();

}
} catch (SQLException e)
{

LoaderException ex = new LoaderException(e);
throw ex;

}
}

The previous sample illustrates the high-level logic of processing the LogSequence
argument. However, the sample does not illustrate the details of how an SQL
insert, update, or delete statement is built. The getPendingChanges method is
called on the LogSequence argument to obtain an iterator of LogElement objects
that a Loader needs to process, and the LogElement.getType().getCode() method is
used to determine whether a LogElement is for an SQL insert, update, or delete
operation.

Evictor sample

You can also use LogSequence and LogElement objects with an Evictor. An Evictor
is used to evict the map entries from the backing map based on certain criteria.
The apply method of the Evictor interface uses LogSequence.
/**
* This is called during cache commit to allow the evictor to track object usage
* in a backing map. This will also report any entries that have been successfully
* evicted.
*
* @param sequence LogSequence of changes to the map
*/
void apply(LogSequence sequence);

Chapter 4. System APIs and plug-ins 179

LogSequenceFilter and LogSequenceTransformer interfaces

Sometimes, it is necessary to filter the LogElement objects so that only LogElement
objects with certain criteria are accepted, and reject other objects. For example, you
might want to serialize a certain LogElement based on some criterion.

LogSequenceFilter solves this problem with the following method.
public boolean accept (LogElement logElement);

This method returns true if the given LogElement should be used in the operation,
and returns false if the given LogElement should not be used.

LogSequenceTransformer is a class that uses the LogSequenceFilter function. It uses
the LogSequenceFilter to filter out some LogElement objects and then serialize the
accepted LogElement objects. This class has two methods. The first method
follows.
public static void serialize(Collection logSequences, ObjectOutputStream stream,

LogSequenceFilter filter, DistributionMode mode) throws IOException

This method allows the caller to provide a filter for determining which
LogElements to include in the serialization process. The DistributionMode
parameter allows the caller to control the serialization process. For example, if the
distribution mode is invalidation only, then there is no need to serialize the value.
The second method of this class is the inflate method, as follows.
public static Collection inflate(ObjectInputStream stream, ObjectGrid

objectGrid) throws IOException, ClassNotFoundException

The inflate method reads the log sequence serialized form, which was created by
the serialize method, from the provided object input stream.

Using eXtreme Scale with JPA
The Java Persistence API (JPA) is a specification that allows mapping Java objects
to relational databases. JPA contains a full object-relational mapping (ORM)
specification using Java language metadata annotations, XML descriptors, or both
to define the mapping between Java objects and a relational database. A number of
open-source and commercial implementations are available.

To use JPA, you must have a supported JPA provider, such as OpenJPA or
Hibernate, JAR files, and a META-INF/persistence.xml file in your class path.

Client-based JPA preload utility overview
The client-based Java Persistence API (JPA) preload utility loads data into eXtreme
Scale backing maps using a client connection to the ObjectGrid.

This capability can simplify loading the eXtreme Scale maps when the queries to
the database cannot be partitioned. A loader, such as a JPA Loader can also be used
and is ideal when the data can be loaded in parallel.

The client-based JPA preload utility can use either the OpenJPA or Hibernate JPA
implementations to load the ObjectGrid from a database. Because WebSphere
eXtreme Scale does not directly interact with the database or Java Database
Connectivity (JDBC), any database that OpenJPA or Hibernate supports can be
used to load the ObjectGrid.

180 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

Typically, a user application provides a persistence unit name, an entity class name,
and a JPA query to the client loader. The client loader retrieves the JPA entity
manager based on the persistence unit name, uses the entity manager to query
data from the database with the provided entity class and JPA query, and finally
loads the data into the distributed ObjectGrid maps. When multi-level relations are
involved in the query, can use a custom query string to optimize the performance.
Optionally, a persistence property map could be provided to override the
configured persistence properties.

A client loader can load data in two different modes, as displayed in the following
table:

Table 11. Client loader modes

Mode Description

Preload Clears and loads all entries into the backing
map. If the map is an entity map, any
related entity maps will also be cleared if the
ObjectGrid CascadeType.REMOVE option is
enabled.

Reload The JPA query is executed against the
ObjectGrid to invalidate all the entities in
the map that match the query. If the map is
an entity map, any related entity maps will
also be cleared if the ObjectGrid
CascadeType.INVALIDATE option is
enabled.

In either case, a JPA query is used to select and load the desired entities from the
database and to store them in the ObjectGrid maps. If the ObjectGrid map is a
non-entity map, the JPA entities will be detached and stored directly. If the

Database

Partition 0

S
e
rv

e
r

P
ro

c
e
s
s

Server Core Cache
(BackingMap)

ObjectGrid

Server Core Cache
(BackingMap)

Partition 1

S
e
rv

e
r

P
ro

c
e
s
s

Server Core Cache
(BackingMap)

ObjectGrid

Server Core Cache
(BackingMap)

Partition 2

S
e
rv

e
r

P
ro

c
e
s
s

Server Core Cache
(BackingMap)

ObjectGrid

Server Core Cache
(BackingMap)

JPA Client Loader

ObjectGrid

JPA Provider

C
lie

n
t
P

ro
c
e
s
s

Figure 4. Client loader that uses JPA implementation to load the ObjectGrid

Chapter 4. System APIs and plug-ins 181

ObjectGrid map is an entity map, the JPA entities are stored as ObjectGrid entity
tuples. You can provide a JPA query or use the default query select o from
EntityName o.

For more information about configuring the client-based JPA preload utility, see the
information in the Programming Guide

Related tasks

“Troubleshooting loaders” on page 274
Use this information to troubleshoot issues with your database loaders.
Related reference

“Client-based JPA preload utility programming”
The client-based Java Persistence API (JPA) preload utility loads data into eXtreme
Scale backing maps using a client connection to the ObjectGrid. You can implement
preloading and reloading of data in your application.
“JPA loader programming considerations” on page 164
A Java Persistence API (JPA) Loader is a loader plug-in implementation that uses
JPA to interact with the database. Use the following considerations when you
develop an application that uses a JPA loader.

Client-based JPA preload utility programming
The client-based Java Persistence API (JPA) preload utility loads data into eXtreme
Scale backing maps using a client connection to the ObjectGrid. You can implement
preloading and reloading of data in your application.

Using the StateManager interface

Use the setObjectGridState method of the StateManager interface to set the
ObjectGrid state to one of the following values: OFFLINE, ONLINE, QUIESCE or
PRELOAD. The StateManager interface prevents other clients from accessing the
ObjectGrid when it is not yet online.

For example, set the ObjectGrid state to PRELOAD before you load the maps with
data. After the data load is complete, set the ObjectGrid state back to ONLINE. See
the information about setting the availability of an ObjectGrid in the Administration
Guide for more information.

When you are preloading different maps in one ObjectGrid, set the ObjectGrid
state to PRELOAD one time and set the value back to ONLINE after all maps finish
data loading. This coordination can be done by the ClientLoadCallback interface.
Set the ObjectGrid state to PRELOAD after the first preStart notification from the
ObjectGrid instance, and set it back to ONLINE after the last postFinish notification.
If you need to coordinate between multiple Java virtual machines, your application
must handle the coordination.

Client-based preload example

The flow of data pre-loading follows:
1. Clear the map to be preloaded. In the case of an entity map, if any relation is

configured as cascade-remove, the related maps are also cleared.
2. Run the query to JPA for the entities in a batch. The batch size is 1000.
3. For each batch, build a key list and value list for each partition.
4. For each partition, call the data grid agent to insert or update the data on the

server side directly if it is an eXtreme Scale client. If the grid is a local instance,
directly insert or update the data in the ObjectGrid maps.

182 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

The following sample code snippet shows a simple client loading.
// Get the StateManager
StateManager stateMgr = StateManagerFactory.getStateManager();

// Set ObjectGrid state to PRELOAD before calling ClientLoader.loader
stateMgr.setObjectGridState(AvailabilityState.PRELOAD, objectGrid);

ClientLoader c = ClientLoaderFactory.getClientLoader();

// Load the data
c.load(objectGrid, "CUSTOMER", "custPU", null,

null, null, null, true, null);

// Set ObjectGrid state back to ONLINE
stateMgr.setObjectGridState(AvailabilityState.ONLINE, objectGrid);

In this example, the CUSTOMER map is configured as an entity map. The
Customer entity class, which is configured in the ObjectGrid entity metadata
descriptor XML file, has a one-to-many relation with Order entities. The Customer
entity has the CascadeType.ALL option enabled on the relation to the Order entity.

Before the ClientLoader.load method is called, the ObjectGrid state is set to
PRELOAD.

The parameters used in the ClientLoader.load method follow:
1. objectGrid : The ObjectGrid instance. It is a client-side ObjectGrid instance.
2. "CUSTOMER" : The map to be loaded. Since the Customer has a cascade-all

relation with Order entities, the Order entities will be loaded too.
3. "custPU" : The JPA persistence unit name for the Customer and Order entities.
4. null : The persistenceProps map is null, which means the default persistence

properties configured in the persistence.xml will be used.
5. null : The entityClass is configured as null. It will be set to the entity class

configured in the ObjectGrid entity meta-data descriptor XML for the map
"CUSTOMER", in this case, Customer.class.

6. null : The loadSql is null, which means the default "select o from CUSTOMER
o" will be used to query the JPA entities.

7. null : The query parameter map is null.
8. true : This indicates the data loading mode is preload. Therefore, clear

operations will be called to both the CUSTOMER and ORDER maps to clear all
the data before loading due to the cascade-remove relation between them.

9. null : The ClientLoaderCallback is null.

For more information about the required parameters, see the ClientLoader API in
the API documentation.

Reload example

Reloading a map is the same as preloading a map except that the isPreload
argument is set to false in the ClientLoader.load method.

In the reload mode, the flow of data loading is as follows:
1. Run the provided query on the ObjectGrid map and invalidate all the results.

In the case of an entity map, if any relation is configured with the
CascadeType.INVALIDATE option, the related entities are also invalidated from
their maps.

Chapter 4. System APIs and plug-ins 183

http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r0/index.jsp

2. Run the provided query to the JPA to query the JPA entities in batch. The batch
size is 1000.

3. For each batch, build a key list and value list for each partition.
4. For each partition, call the data grid agent to insert or update the data on the

server side directly if it is an eXtreme Scale client. If the grid is a local eXtreme
Scale configuration, directly insert or update the data in the ObjectGrid maps.

A reload sample follows:
// Get the StateManager
StateManager stateMgr = StateManagerFactory.getStateManager();

// Set ObjectGrid state to PRELOAD before calling ClientLoader.loader
stateMgr.setObjectGridState(AvailabilityState.PRELOAD, objectGrid);

ClientLoader c = ClientLoaderFactory.getClientLoader();

// Load the data
String loadSql = "select c from CUSTOMER c

where c.custId >= :startCustId and c.custId < :endCustId ";
Map<String, Long> params = new HashMap<String, Long>();
params.put("startCustId", 1000L);
params.put("endCustId", 2000L);

c.load(objectGrid, "CUSTOMER", "customerPU", null, null,
loadSql, params, false, null);

// Set ObjectGrid state back to ONLINE
stateMgr.setObjectGridState(AvailabilityState.ONLINE, objectGrid);

Compared to the preload sample, the main difference is that a loadSql and
parameters are provided. This sample only reloads the Customer data with id
between 1000 and 2000.

Notice this query string observes both JPA query syntax and eXtreme Scale entity
query syntax. This query string is important because it runs twice, once to
ObjectGrid to invalidate the matched ObjectGrid entities and then to the JPA to
load the matched JPA entities.

Calling a client loader in a Loader implementation

In the Loader interface, there is a preload method:

void preloadMap(Session session, BackingMap backingMap) throws
LoaderException;

This method signals the loader to preload the data into the map. A loader
implementation can use a client loader to preload the data to all its partitions. For
example, the JPA loader uses the client loader to preload data into the map.

For more information, see the JPA loaders overview topic in the Product Overview.

An example of how to preload the map using the client loader in the preloadMap
method follows. The example first checks whether the current partition number is
the same as the preload partition. If the partition number is not the same as the
preload partition, no action occurs. If the partition numbers match, the client
loader is called to load data into the maps. It is important to call the client loader
in one and only one partition.

184 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

ObjectGrid og = session.getObjectGrid();
int partitionId = backingMap.getPartitionId();
int numPartitions = backingMap.getPartitionManager().getNumOfPartitions();

// Only call client loader data in one partition
if (partitionId == preloadPartition) {

ClientLoader loader = ClientLoaderFactory.getClientLoader();

// Call the client loader to load the data
try {

loader.load(og, backingMap.getName(), txCallback.getPersistenceUnitName(),
null, entityClass, null, null, true, null);
} catch (ObjectGridException e) {

LoaderException le = new LoaderException("Exception caught in ObjectMap " +
ogName + "." + mapName);

le.initCause(e);
throw le;

}
}

Manual client load

The ClientLoader.load method provides a client load function that satisfies most
scenarios. However, if you want to load data without the ClientLoader.load
method, you can implement your own preload.

A template of a manual client load follows:
// Get the StateManager
StateManager stateMgr = StateManagerFactory.getStateManager();

// Set ObjectGrid state to PRELOAD before calling ClientLoader.loader
stateMgr.setObjectGridState(AvailabilityState.PRELOAD, objectGrid);

// Load the data
...

// Set ObjectGrid state back to ONLINE
stateMgr.setObjectGridState(AvailabilityState.ONLINE, objectGrid);

If you are loading the data from the client side, loading the data using a DataGrid
agent could increase performance. By using a DataGrid agent, all the data reads
and writes occur in the server process. You can also design your application to
make sure DataGrid agents to multiple partitions run in parallel to further boost
performance.

To implement data preload with a DataGrid agent, see the following example.

After you create the data preload implementation, you can create a generic Loader
to complete the following tasks:
1. Query the data from database in batches.
2. Build a key list and value list for each partition.
3. For each partition, call the agentMgr.callReduceAgent(agent, aKey) method to

run the agent in the server in a thread. By running in a thread, you can run
agents concurrently on multiple partitions.

Chapter 4. System APIs and plug-ins 185

Example: Data preload with a DataGrid agent

If you are loading the data from the client side, loading the data using a DataGrid
agent could increase performance. By using a DataGrid agent, all the data reads
and writes occur in the server process. You can also design your application to
make sure DataGrid agents to multiple partitions run in parallel to further boost
performance.

An example of how to load the data with a DataGrid agent follows:
import java.io.Externalizable;
import java.io.IOException;
import java.io.ObjectInput;
import java.io.ObjectOutput;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Iterator;
import java.util.List;

import com.ibm.websphere.objectgrid.NoActiveTransactionException;
import com.ibm.websphere.objectgrid.ObjectGridException;
import com.ibm.websphere.objectgrid.ObjectGridRuntimeException;
import com.ibm.websphere.objectgrid.ObjectMap;
import com.ibm.websphere.objectgrid.Session;
import com.ibm.websphere.objectgrid.TransactionException;
import com.ibm.websphere.objectgrid.datagrid.ReduceGridAgent;
import com.ibm.websphere.objectgrid.em.EntityManager;

public class InsertAgent implements ReduceGridAgent, Externalizable {

private static final long serialVersionUID = 6568906743945108310L;

private List keys = null;

private List vals = null;

protected boolean isEntityMap;

public InsertAgent() {
}

public InsertAgent(boolean entityMap) {
isEntityMap = entityMap;

}

public Object reduce(Session sess, ObjectMap map) {
throw new UnsupportedOperationException(

"ReduceGridAgent.reduce(Session, ObjectMap)");
}

public Object reduce(Session sess, ObjectMap map, Collection arg2) {
Session s = null;
try {

s = sess.getObjectGrid().getSession();
ObjectMap m = s.getMap(map.getName());
s.beginNoWriteThrough();
Object ret = process(s, m);
s.commit();
return ret;

} catch (ObjectGridRuntimeException e) {
if (s.isTransactionActive()) {

try {
s.rollback();

} catch (TransactionException e1) {
} catch (NoActiveTransactionException e1) {
}

186 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

}
throw e;

} catch (Throwable t) {
if (s.isTransactionActive()) {

try {
s.rollback();

} catch (TransactionException e1) {
} catch (NoActiveTransactionException e1) {
}

}
throw new ObjectGridRuntimeException(t);

}

}

public Object process(Session s, ObjectMap m) {
try {

if (!isEntityMap) {
// In the POJO case, it is very straightforward,
// we can just put everything in the
// map using insert
insert(m);

} else {
// 2. Entity case.
// In the Entity case, we can persist the entities
EntityManager em = s.getEntityManager();
persistEntities(em);

}
return Boolean.TRUE;

} catch (ObjectGridRuntimeException e) {
throw e;

} catch (ObjectGridException e) {
throw new ObjectGridRuntimeException(e);

} catch (Throwable t) {
throw new ObjectGridRuntimeException(t);

}

}

/**
* Basically this is fresh load.
* @param s
* @param m
* @throws ObjectGridException
*/
protected void insert(ObjectMap m) throws ObjectGridException {

int size = keys.size();

for (int i = 0; i < size; i++) {
m.insert(keys.get(i), vals.get(i));

}

}

protected void persistEntities(EntityManager em) {
Iterator<Object> iter = vals.iterator();

while (iter.hasNext()) {
Object value = iter.next();
em.persist(value);

}
}

Chapter 4. System APIs and plug-ins 187

public Object reduceResults(Collection arg0) {
return arg0;

}

public void readExternal(ObjectInput in)
throws IOException, ClassNotFoundException {

int v = in.readByte();
isEntityMap = in.readBoolean();
vals = readList(in);
if (!isEntityMap) {

keys = readList(in);
}

}

public void writeExternal(ObjectOutput out) throws IOException {
out.write(1);
out.writeBoolean(isEntityMap);

writeList(out, vals);
if (!isEntityMap) {

writeList(out, keys);
}

}

public void setData(List ks, List vs) {
vals = vs;
if (!isEntityMap) {

keys = ks;
}

}

/**
* @return Returns the isEntityMap.
*/
public boolean isEntityMap() {

return isEntityMap;
}

static public void writeList(ObjectOutput oo, Collection l)
throws IOException {

int size = l == null ? -1 : l.size();
oo.writeInt(size);
if (size > 0) {

Iterator iter = l.iterator();
while (iter.hasNext()) {

Object o = iter.next();
oo.writeObject(o);

}
}

}

public static List readList(ObjectInput oi)
throws IOException, ClassNotFoundException {

int size = oi.readInt();
if (size == -1) {

return null;
}

ArrayList list = new ArrayList(size);
for (int i = 0; i < size; ++i) {

Object o = oi.readObject();
list.add(o);

188 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

}
return list;

}
}

Related concepts

“Client-based JPA preload utility overview” on page 180
The client-based Java Persistence API (JPA) preload utility loads data into eXtreme
Scale backing maps using a client connection to the ObjectGrid.
Related tasks

“Troubleshooting loaders” on page 274
Use this information to troubleshoot issues with your database loaders.

JPA time-based data updater
A Java Persistence API (JPA) time-based database updater updates the ObjectGrid
maps with the latest changes in the database.

When changes are made directly to a database that is being fronted by WebSphere
eXtreme Scale, those changes are not concurrently reflected in the eXtreme Scale
grid. To properly implement eXtreme Scale as an in-memory database processing
space, take into consideration that your grid can get out of sync with the database.
Time-based database updater uses the System Change Number (SCN) capability in
Oracle 10g and row change timestamp in DB2® 9.5 to monitor changes in the
database for invalidation and update. The updater also allows applications to have
a user-defined field for the same purpose.

The time-based database updater periodically queries the database using JPA
interfaces to get the JPA entities that represent the newly inserted and updated
records in the database. To periodically update the records, every record in the
database should have a timestamp to identify the time or sequence in which the
record was last updated or inserted. It is not required that the timestamp be in a
timestamp format. The timestamp value can be in an integer or long format, if it
generates a unique, increasing value.

Several commercial databases have provided this capability.

For example, in DB2 9.5, you can define a column using the ROW CHANGE
TIMESTAMP format as follows:

DatabaseJPA Provider

select...

K1 V1

find (k1)

Read
Timer

v1

v1

insert (k1,v1)

Figure 5. Periodic refresh

Chapter 4. System APIs and plug-ins 189

ROWCHGTS TIMESTAMP NOT NULL
GENERATED ALWAYS
FOR EACH ROW ON UPDATE AS
ROW CHANGE TIMESTAMP

In Oracle, you can use the pseudo-column ora_rowscn, which represents the
system change number of the record.

The time-based database updater updates the ObjectGrid maps in three different
ways:
1. INVALIDATE_ONLY. Invalidate the entries in the ObjectGrid map if the

corresponding records in the database have changed.
2. UPDATE_ONLY. Update the entries in the ObjectGrid map if the corresponding

records in the database have changed. However, all the newly inserted records
to the database are ignored.

3. INSERT_UPDATE. Update the existing entries in the ObjectGrid map with the
latest values from the database. Also, all the newly inserted records to the
database are inserted into the ObjectGrid map.

For more information about configuring the JPA time-based data updater, see the
information in the Administration Guide.

Starting the JPA time-based updater
When you start the Java Persistence API (JPA) time-based updater, the ObjectGrid
maps are updated with the latest changes in the database.

Before you begin

Configure the time-based updater. See the information about configuring a JPA
time-based data updater in the Administration Guide.

About this task

For more information about how the Java Persistence API (JPA) time-based data
updater works, see “JPA time-based data updater” on page 189.

Procedure
v Start a time-based database updater.

– Automatically for distributed eXtreme Scale:

If you create the timeBasedDBUpdate configuration for the backing map, the
time-based database updater is automatically started when a distributed
ObjectGrid primary shard is activated. For an ObjectGrid that has multiple
partitions, the time-based database updater only starts at partition 0.

– Automatically for local eXtreme Scale:

If you create the timeBasedDBUpdate configuration for the backing map, the
time-based database updater is automatically started when the local map is
activated.

– Manually:

You can also manually start or stop a time-based database updater using the
TimeBasedDBUpdater API.
public synchronized void startDBUpdate(ObjectGrid objectGrid, String mapName,
String punitName, Class entityClass, String timestampField, DBUpdateMode mode) {

1. ObjectGrid: the ObjectGrid instance (local or client).

190 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

2. mapName: the name of the backing map for which the time-based
database updater is started.

3. punitName: the JPA persistence unit name for creating a JPA entity
manager factory; the default value is the name of the first persistence unit
defined in the persistence.xml file.

4. entityClass: The entity class name used to interact with the Java
Persistence API (JPA) provider; the entity class name is used to get JPA
entities using entity queries.

5. timestampField: A timestamp field of the entity class to identify the time
or sequence when a database back end record was last updated or
inserted.

6. mode: The time-based database update mode; an INVALIDATE_ONLY
type causes it to invalidate the entries in the ObjectGrid map if the
corresponding records in the database have changed; an UPDATE_ONLY
type indicates to update the existing entries in the ObjectGrid map with
the latest values from the database; however, all the newly inserted
records to the database are ignored; an INSERT_UPDATE type indicates to
update the existing entries in the ObjectGrid map with the latest values
from the database; also, all the newly inserted records to the database are
inserted into the ObjectGrid map.

If you want to stop the time-based database updater, you can call the
following method to stop the updater:
public synchronized void stopDBUpdate(ObjectGrid objectGrid, String mapName)

The ObjectGrid and mapName parameters should be the same as those
passed in the startDBUpdate method.

v Create the timestamp field in your database.
– DB2

As a part of the optimistic locking feature, DB2 9.5 provides a row change
timestamp feature. You can define a column ROWCHGTS using the ROW
CHANGE TIMESTAMP format as follows:
ROWCHGTS TIMESTAMP NOT NULL

GENERATED ALWAYS
FOR EACH ROW ON UPDATE AS
ROW CHANGE TIMESTAMP

Then you can indicate the entity field which corresponds to this column as
the timestamp field by either annotation or configuration. An example
follows:
@Entity(name = "USER_DB2")
@Table(name = "USER1")
public class User_DB2 implements Serializable {

private static final long serialVersionUID = 1L;

public User_DB2() {
}

public User_DB2(int id, String firstName, String lastName) {
this.id = id;
this.firstName = firstName;
this.lastName = lastName;

}

@Id
@Column(name = "ID")
public int id;

@Column(name = "FIRSTNAME")

Chapter 4. System APIs and plug-ins 191

public String firstName;

@Column(name = "LASTNAME")
public String lastName;

@com.ibm.websphere.objectgrid.jpa.dbupdate.annotation.Timestamp
@Column(name = "ROWCHGTS", updatable = false, insertable = false)
public Timestamp rowChgTs;

}

– Oracle

In Oracle, there is a pseudo-column ora_rowscn for the system change
number of the record. You can use this column for the same purpose. An
example of the entity that uses the ora_rowscn field as the time-based
database update timestamp field follows:
@Entity(name = "USER_ORA")
@Table(name = "USER1")
public class User_ORA implements Serializable {

private static final long serialVersionUID = 1L;

public User_ORA() {
}

public User_ORA(int id, String firstName, String lastName) {
this.id = id;
this.firstName = firstName;
this.lastName = lastName;

}

@Id
@Column(name = "ID")
public int id;

@Column(name = "FIRSTNAME")
public String firstName;

@Column(name = "LASTNAME")
public String lastName;

@com.ibm.websphere.objectgrid.jpa.dbupdate.annotation.Timestamp
@Column(name = "ora_rowscn", updatable = false, insertable = false)
public long rowChgTs;

}

– Other databases

For other types of databases, you can create a table column to track the
changes. The column values have to be manually managed by the application
that updates the table.
Take an Apache Derby database as an example: You can create a column
"ROWCHGTS" to track the change numbers. Also, a latest change number is
tracked for this table. Every time a record is inserted or updated, the latest
change number for the table is incremented, and the ROWCHGTS column
value for the record is updated with this incremented number.
@Entity(name = "USER_DER")
@Table(name = "USER1")
public class User_DER implements Serializable {

private static final long serialVersionUID = 1L;

public User_DER() {
}

public User_DER(int id, String firstName, String lastName) {

192 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

this.id = id;
this.firstName = firstName;
this.lastName = lastName;

}

@Id
@Column(name = "ID")
public int id;

@Column(name = "FIRSTNAME")
public String firstName;

@Column(name = "LASTNAME")
public String lastName;

@com.ibm.websphere.objectgrid.jpa.dbupdate.annotation.Timestamp
@Column(name = "ROWCHGTS", updatable = true, insertable = true)
public long rowChgTs;

}

OptimisticCallback plug-in
Use the OptimisticCallback plug-in to customize versioning and comparison
operations of cache objects when you are using the optimistic locking strategy.

You can provide a pluggable optimistic callback object that implements the
com.ibm.websphere.objectgrid.plugins.OptimisticCallback interface. For entity
maps, a high performance OptimisticCallback plug-in is automatically configured.

Purpose

Use the OptimisticCallback interface to provide optimistic comparison operations
for the values of a map. An OptimisticCallback plug-in is required when you use
the optimistic locking strategy. The product provides a default OptimisticCallback
implementation. However, typically your application must plug in its own
implementation of the OptimisticCallback interface.

Default implementation

The eXtreme Scale framework provides a default implementation of the
OptimisticCallback interface that is used if the application does not plug in an
application-provided OptimisticCallback object. The default implementation always
returns the special value of NULL_OPTIMISTIC_VERSION as the version object
for the value and never updates the version object. This action makes optimistic
comparison a "no operation" function. In most cases, you do not want the "no
operation" function to occur when you are using the optimistic locking strategy.
Your applications must implement the OptimisticCallback interface and plug in
their own OptimisticCallback implementations so that the default implementation
is not used. However, at least one scenario exists where the default provided
OptimisticCallback implementation is useful. Consider the following situation:
v A loader is plugged in for the backing map.
v The loader knows how to perform the optimistic comparison without assistance

from an OptimisticCallback plug-in.

How can the loader perform optimistic versioning without assistance from an
OptimisticCallback object? The loader has knowledge of the value class object and
knows which field of the value object is used as an optimistic versioning value. For
example, suppose the following interface is used for the value object for the
employees map:

Chapter 4. System APIs and plug-ins 193

public interface Employee
{

// Sequential sequence number used for optimistic versioning.
public long getSequenceNumber();
public void setSequenceNumber(long newSequenceNumber);
// Other get/set methods for other fields of Employee object.

}

In this example, the loader knows that it can use the getSequenceNumber method
to get the current version information for an Employee value object. The loader
increments the returned value to generate a new version number before it updates
the persistent storage with the new Employee value. For a Java database
connectivity (JDBC) loader, the current sequence number in the WHERE clause of
an overqualified SQL UPDATE statement is used, and it uses the new generated
sequence number to set the sequence number column to the new sequence number
value. Another possibility is that the loader makes use of some backend-provided
function that automatically updates a hidden column that can be used for
optimistic versioning.

In some situations, a stored procedure or trigger can possibly be used to help
maintain a column that holds versioning information. If the loader is using one of
these techniques for maintaining optimistic versioning information, then the
application does not need to provide an OptimisticCallback implementation. The
default OptimisticCallback implementation is usable in this scenario because the
loader can handle optimistic versioning without any assistance from an
OptimisticCallback object.

Default implementation for entities

Entities are stored in the ObjectGrid using tuple objects. The default
OptimisticCallback implementation behavior is similar to the behavior for
non-entity maps. However, the version field in the entity is identified using the
@Version annotation or the version attribute in the entity descriptor XML file.

The version attribute can be of the following types: int, Integer, short, Short, long,
Long or java.sql.Timestamp. An entity must only have one version attribute
defined. Only set the version attribute during construction. After the entity is
persisted, the value of the version attribute should not be modified.

If a version attribute is not configured and the optimistic locking strategy is used,
then the entire tuple is implicitly versioned using the entire state of the tuple,
which is much more expensive

In the following example, the Employee entity has a long version attribute named
SequenceNumber:
@Entity
public class Employee
{
private long sequence;

// Sequential sequence number used for optimistic versioning.
@Version
public long getSequenceNumber() {

return sequence;
}
public void setSequenceNumber(long newSequenceNumber) {

this.sequence = newSequenceNumber;
}
// Other get/set methods for other fields of Employee object.

}

194 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

Writing an OptimisticCallback plug-in

An OptimisticCallback plug-in must to implement the OptimisticCallback interface
and follow the common ObjectGrid plug-in conventions. See the
OptimisticCallback interface in the API documentation for more information.

The following list provides a description or consideration for each of the methods
in the OptimisticCallback interface:

NULL_OPTIMISTIC_VERSION

This special value is returned by the getVersionedObjectForValue method if the
OptimisticCallback implementation does not require version checking. The built-in
plugin implementation of the
com.ibm.websphere.objectgrid.plugins.builtins.NoVersioningOptimisticCallback
class uses this value because versioning is disabled when you are specifying this
plug-in implementation.

getVersionedObjectForValue method

The getVersionedObjectForValue method might return a copy of the value or an
attribute of the value that can be used for versioning purposes. This method is
called whenever an object is associated with a transaction. When no Loader is
plugged into a backing map, the backing map uses this value at commit time to
perform an optimistic version comparison. The optimistic version comparison is
used by the backing map to ensure that the version has not changed after this
transaction first accessed the map entry that was modified by this transaction. If
another transaction had already modified the version for this map entry, the
version comparison fails and the backing map displays an
OptimisticCollisionException exception to force the transaction to roll back. If a
Loader is plugged in, the backing map does not use the optimistic versioning
information. Instead, the Loader is responsible for performing the optimistic
versioning comparison and updating the versioning information when necessary.
The Loader typically gets the initial versioning object from the LogElement passed
to the batchUpdate method on the loader, which is called when a flush operation
occurs or a transaction is committed.

The following code shows the implementation used by the
EmployeeOptimisticCallbackImpl object:
public Object getVersionedObjectForValue(Object value)
{

if (value == null)
{

return null;
}
else
{

Employee emp = (Employee) value;
return new Long(emp.getSequenceNumber());

}
}

As demonstrated in the previous example, the sequenceNumber attribute is
returned in a java.lang.Long object as expected by the Loader, which implies that
the same person that wrote the Loader either wrote the
EmployeeOptimisticCallbackImpl implementation or worked closely with the
person that implemented the EmployeeOptimisticCallbackImpl - for example,
agreed on the value returned by the getVersionedObjectForValue method. The

Chapter 4. System APIs and plug-ins 195

default OptimisticCallback plug-in returns the special value
NULL_OPTIMISTIC_VERSION as the version object.

updateVersionedObjectForValue method

This method is called whenever a transaction has updated a value and a new
versioned object is needed. If the getVersionedObjectForValue method returns an
attribute of the value, this method typically updates the attribute value with a new
version object. If getVersionedObjectForValue method returns a copy of the value,
this method typically does not complete any actions. The default
OptimisticCallback plug-in does not complete any actions with this method
because the default implementation of getVersionedObjectForValue always returns
the special value NULL_OPTIMISTIC_VERSION as the version object. The
following example shows the implementation used by the
EmployeeOptimisticCallbackImpl object that is used in the OptimisticCallback
section:
public void updateVersionedObjectForValue(Object value)
{

if (value != null)
{

Employee emp = (Employee) value;
long next = emp.getSequenceNumber() + 1;
emp.updateSequenceNumber(next);

}
}

As demonstrated in the previous example, the sequenceNumber attribute
increments by one so that the next time the getVersionedObjectForValue method is
called, the java.lang.Long value that is returned has a long value that is the
original sequence number value plus one, for example, is the next version value
for this employee instance. This example implies that the same person that wrote
the Loader either wrote EmployeeOptimisticCallbackImpl or worked closely with
the person that implemented the EmployeeOptimisticCallbackImpl.

serializeVersionedValue method

This method writes the versioned value to the specified stream. Depending on the
implementation, the versioned value can be used to identify optimistic update
collisions. In some implementations, the versioned value is a copy of the original
value. Other implementations might have a sequence number or some other object
to indicate the version of the value. Because the actual implementation is
unknown, this method is provided to perform the appropriate serialization. The
default implementation calls the writeObject method.

inflateVersionedValue method

This method takes the serialized version of the versioned value and returns the
actual versioned value object. Depending on the implementation, the versioned
value can be used to identify optimistic update collisions. In some
implementations, the versioned value is a copy of the original value. Other
implementations might have a sequence number or some other object to indicate
the version of the value. Because the actual implementation is unknown, this
method is provided to perform the appropriate deserialization. The default
implementation calls the readObject method.

196 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

Using application-provided OptimisticCallback object

You have two approaches to add an application-provided OptimisticCallback object
into the BackingMap configuration: XML configuration and programmatic
configuration.

XML configuration approach to plug in an OptimisticCallback
object

The application can use an XML file to plug in its OptimisticCallback object as
shown in the following example:
<?xml version="1.0" encoding="UTF-8"?>
<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">
<objectGrids>

<objectGrid name="grid1">
<backingMap name="employees" pluginCollectionRef="employees" lockStrategy="OPTIMISTIC" />

</objectGrid>
</objectGrids>

<backingMapPluginCollections>
<backingMapPluginCollection id="employees">

<bean id="OptimisticCallback" className="com.xyz.EmployeeOptimisticCallbackImpl" />
</backingMapPluginCollection>

</backingMapPluginCollections>
</objectGridConfig>

Programmatically plug in an OptimisticCallback object

The following example demonstrates how an application can programmatically
plug in an OptimisticCallback object for the employee backing map in the local
grid1 ObjectGrid instance:
import com.ibm.websphere.objectgrid.ObjectGridManagerFactory;
import com.ibm.websphere.objectgrid.ObjectGridManager;
import com.ibm.websphere.objectgrid.ObjectGrid;
import com.ibm.websphere.objectgrid.BackingMap;
ObjectGridManager ogManager = ObjectGridManagerFactory.getObjectGridManager();
ObjectGrid og = ogManager.createObjectGrid("grid1");
BackingMap bm = dg.defineMap("employees");
EmployeeOptimisticCallbackImpl cb = new EmployeeOptimisticCallbackImpl();
bm.setOptimisticCallback(cb);

ObjectTransformer plug-in
With the ObjectTransformer plug-in, you can serialize, deserialize, and copy objects
in the cache for increased performance.

If you see performance issues with processor usage, add an ObjectTransformer
plug-in to each map. If you do not provide an ObjectTransformer plug-in, up to
60-70 percent of the total processor time is spent serializing and copying entries.

Purpose

With the ObjectTransformer plug-in, your applications can provide custom
methods for the following operations:
v Serialize or deserialize the key for an entry
v Serialize or deserialize the value for an entry
v Copy a key or value for an entry

If no ObjectTransformer plug-in is provided, you must be able to serialize the keys
and values because the ObjectGrid uses a serialize and deserialize sequence to

Chapter 4. System APIs and plug-ins 197

copy the objects. This method is expensive, so use an ObjectTransformer plug-in
when performance is critical. The copying occurs when an application looks up an
object in a transaction for the first time. You can avoid this copying by setting the
copy mode of the Map to NO_COPY or reduce the copying by setting the copy
mode to COPY_ON_READ. Optimize the copy operation when needed by the
application by providing a custom copy method on this plug-in. Such a plug-in
can reduce the copy overhead from 65−70 percent to 2/3 percent of total processor
time.

The default copyKey and copyValue method implementations first attempt to use
the clone method, if the method is provided. If no clone method implementation is
provided, the implementation defaults to serialization.

Object serialization is also used directly when the eXtreme Scale is running in
distributed mode. The LogSequence uses the ObjectTransformer plug-in to help
serialize keys and values before transmitting the changes to peers in the
ObjectGrid. You must take care when providing a custom serialization method
instead of using the built-in Java developer kit serialization. Object versioning is a
complex issue and you might encounter problems with version compatibility if
you do not ensure that your custom methods are designed for versioning.

The following list describes how the eXtreme Scale tries to serialize both keys and
values:
v If a custom ObjectTransformer plug-in is written and plugged in, eXtreme Scale

calls methods in the ObjectTransformer interface to serialize keys and values and
get copies of object keys and values.

v If a custom ObjectTransformer plug-in is not used, eXtreme Scale serializes and
deserializes values according to the default. If the default plug-in is used, each
object is implemented as externalizable or is implemented as serializable.
– If the object supports the Externalizable interface, the writeExternal method is

called. Objects that are implemented as externalizable lead to better
performance.

– If the object does not support the Externalizable interface and does implement
the Serializable interface,, the object is saved using the ObjectOutputStream
method.

Using the ObjectTransformer interface

An ObjectTransformer object must implement the ObjectTransformer interface and
follow the common ObjectGrid plug-in conventions.

Two approaches, programmatic configuration and XML configuration, are used to
add an ObjectTransformer object into the BackingMap configuration as follows.

XML configuration approach to plug in an ObjectTransformer

Assume that the class name of the ObjectTransformer implementation is the
com.company.org.MyObjectTransformer class. This class implements the
ObjectTransformer interface. An ObjectTransformer implementation can be
configured using the following XML:
<?xml version="1.0" encoding="UTF-8"?>
<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">
<objectGrids>

<objectGrid name="myGrid">
<backingMap name="myMap" pluginCollectionRef="myMap" />

198 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

</objectGrid>
</objectGrids>

<backingMapPluginCollections>
<backingMapPluginCollection id="myMap">

<bean id="ObjectTransformer" className="com.company.org.MyObjectTransformer" />
</backingMapPluginCollection>

</backingMapPluginCollections>
</objectGridConfig>

Programmatically plug in an ObjectTransformer object

The following code snippet creates the custom ObjectTransformer object and adds
it to a BackingMap:
ObjectGridManager objectGridManager = ObjectGridManagerFactory.getObjectGridManager();
ObjectGrid myGrid = objectGridManager.createObjectGrid("myGrid", false);
BackingMap backingMap = myGrid.getMap("myMap");
MyObjectTransformer myObjectTransformer = new MyObjectTransformer();
backingMap.setObjectTransformer(myObjectTransformer);

ObjectTransformer usage scenarios

You can use the ObjectTransformer plug-in in the following situations:
v Non-serializable object
v Serializable object but improve serialization performance
v Key or value copy

In the following example, ObjectGrid is used to store the Stock class:
/**
* Stock object for ObjectGrid demo
*
*
*/
public class Stock implements Cloneable {

String ticket;
double price;
String company;
String description;
int serialNumber;
long lastTransactionTime;
/**
* @return Returns the description.
*/
public String getDescription() {

return description;
}
/**
* @param description The description to set.
*/
public void setDescription(String description) {

this.description = description;
}
/**
* @return Returns the lastTransactionTime.
*/
public long getLastTransactionTime() {

return lastTransactionTime;
}
/**
* @param lastTransactionTime The lastTransactionTime to set.
*/
public void setLastTransactionTime(long lastTransactionTime) {

this.lastTransactionTime = lastTransactionTime;
}
/**
* @return Returns the price.
*/
public double getPrice() {

return price;
}
/**
* @param price The price to set.
*/

Chapter 4. System APIs and plug-ins 199

public void setPrice(double price) {
this.price = price;

}
/**
* @return Returns the serialNumber.
*/
public int getSerialNumber() {

return serialNumber;
}
/**
* @param serialNumber The serialNumber to set.
*/
public void setSerialNumber(int serialNumber) {

this.serialNumber = serialNumber;
}
/**
* @return Returns the ticket.
*/
public String getTicket() {

return ticket;
}
/**
* @param ticket The ticket to set.
*/
public void setTicket(String ticket) {

this.ticket = ticket;
}
/**
* @return Returns the company.
*/
public String getCompany() {

return company;
}
/**
* @param company The company to set.
*/
public void setCompany(String company) {

this.company = company;
}
//clone
public Object clone() throws CloneNotSupportedException
{

return super.clone();
}

}

You can write a custom object transformer class for the Stock class:
/**
* Custom implementation of ObjectGrid ObjectTransformer for stock object
*
*/
public class MyStockObjectTransformer implements ObjectTransformer {
/* (non−Javadoc)
* @see
* com.ibm.websphere.objectgrid.plugins.ObjectTransformer#serializeKey
* (java.lang.Object,
* java.io.ObjectOutputStream)
*/
public void serializeKey(Object key, ObjectOutputStream stream) throws IOException {

String ticket= (String) key;
stream.writeUTF(ticket);

}

/* (non−Javadoc)
* @see com.ibm.websphere.objectgrid.plugins.
ObjectTransformer#serializeValue(java.lang.Object,
java.io.ObjectOutputStream)
*/
public void serializeValue(Object value, ObjectOutputStream stream) throws IOException {

Stock stock= (Stock) value;
stream.writeUTF(stock.getTicket());
stream.writeUTF(stock.getCompany());
stream.writeUTF(stock.getDescription());
stream.writeDouble(stock.getPrice());
stream.writeLong(stock.getLastTransactionTime());
stream.writeInt(stock.getSerialNumber());

}

/* (non−Javadoc)
* @see com.ibm.websphere.objectgrid.plugins.
ObjectTransformer#inflateKey(java.io.ObjectInputStream)
*/
public Object inflateKey(ObjectInputStream stream) throws IOException, ClassNotFoundException {

200 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

String ticket=stream.readUTF();
return ticket;

}

/* (non−Javadoc)
* @see com.ibm.websphere.objectgrid.plugins.
ObjectTransformer#inflateValue(java.io.ObjectInputStream)
*/

public Object inflateValue(ObjectInputStream stream) throws IOException, ClassNotFoundException {
Stock stock=new Stock();
stock.setTicket(stream.readUTF());
stock.setCompany(stream.readUTF());
stock.setDescription(stream.readUTF());
stock.setPrice(stream.readDouble());
stock.setLastTransactionTime(stream.readLong());
stock.setSerialNumber(stream.readInt());
return stock;

}

/* (non−Javadoc)
* @see com.ibm.websphere.objectgrid.plugins.
ObjectTransformer#copyValue(java.lang.Object)
*/
public Object copyValue(Object value) {

Stock stock = (Stock) value;
try {

return stock.clone();
}
catch (CloneNotSupportedException e)
{

// display exception message }
}

/* (non−Javadoc)
* @see com.ibm.websphere.objectgrid.plugins.
ObjectTransformer#copyKey(java.lang.Object)
*/
public Object copyKey(Object key) {

String ticket=(String) key;
String ticketCopy= new String (ticket);
return ticketCopy;

}
}

Then, plug in this custom MyStockObjectTransformer class into the BackingMap:
ObjectGridManager ogf=ObjectGridManagerFactory.getObjectGridManager();
ObjectGrid og = ogf.getObjectGrid("NYSE");
BackingMap bm = og.defineMap("NYSEStocks");
MyStockObjectTransformer ot = new MyStockObjectTransformer();
bm.setObjectTransformer(ot);

WebSphereTransactionCallback plug-in
When you use the WebSphereTransactionCallback plug-in, enterprise applications
that are running in a WebSphere Application Server environment can manage
ObjectGrid transactions.

When you are using an ObjectGrid session within a method that is configured to
use container-managed transactions, the enterprise container automatically begins,
commits or rolls back the ObjectGrid transaction. When you are using Java
Transaction API (JTA) UserTransaction objects, the ObjectGrid transaction is
managed by the UserTransaction object automatically.

For a detailed discussion of the implementation of this plug-in, see “External
transaction managers” on page 155

Note: The ObjectGrid does not support 2-phase, XA transactions. This plug-in does
not enlist the ObjectGrid transaction with the transaction manager. Therefore, if the
ObjectGrid fails to commit, any other resources that are managed by the XA
transaction do not roll back.

Chapter 4. System APIs and plug-ins 201

Enabling the WebSphereTransactionCallback plug-in

You can enable the WebSphereTransactionCallback into the ObjectGrid
configuration with programmatic configuration or XML configuration.

XML configuration approach to plug in the
WebSphereTransactionCallback object

The following XML configuration creates the WebSphereTransactionCallback object
and adds it to an ObjectGrid. The following text must be in the myGrid.xml file:
<?xml version="1.0" encoding="UTF-8"?>
<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">
<objectGrids>

<objectGrid name="myGrid">
<bean id="TransactionCallback" className=

"com.ibm.websphere.objectgrid.plugins.builtins.WebSphereTransactionCallback" />

</objectGrid>
</objectGrids>

</objectGridConfig>

Programmatically plug in the WebSphereTransactionCallback
object

The following code snippet creates the WebSphereTransactionCallback object and
adds it to an ObjectGrid:
ObjectGridManager objectGridManager = ObjectGridManagerFactory.getObjectGridManager();
ObjectGrid myGrid = objectGridManager.createObjectGrid("myGrid", false);
WebSphereTransactionCallback wsTxCallback= new WebSphereTransactionCallback ();
myGrid.setTransactionCallback(wsTxCallback);

202 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

Chapter 5. Administration APIs

In addition to system application programming interfaces (APIs), WebSphere
eXtreme Scale also includes administration APIs that allow applications to monitor
and administer servers and clients.

Embedded server API
WebSphere eXtreme Scale includes application programming interfaces (APIs) and
system programming interfaces for embedding eXtreme Scale servers and clients
within your existing Java applications. The following topic describes the available
embedded server APIs.

Instantiating the eXtreme Scale server

You can use several properties to configure the eXtreme Scale server instance,
which you can retrieve from the ServerFactory.getServerProperties method. The
ServerProperties object is a singleton, so each call to the getServerProperties
method retrieves the same instance.

You can create a new server with the following code.
Server server = ServerFactory.getInstance();

All properties set before the first invocation of getInstance are used to initialize the
server.

Setting server properties

You can set the server properties until the ServerFactory.getInstance is called for
the first time. The first call of the getInstance method instantiates the eXtreme Scale
server, and reads all the configured properties. Setting the properties after creation
has no effect. the following example shows how to set properties prior to
instantiating a Server instance.
// Get the server properties associated with this process.
ServerProperties serverProperties = ServerFactory.getServerProperties();

// Set the server name for this process.
serverProperties.setServerName("EmbeddedServerA");

// Set the name of the zone this process is contained in.
serverProperties.setZoneName("EmbeddedZone1");

// Set the end point information required to bootstrap to the catalog service.
serverProperties.setCatalogServiceBootstrap("localhost:2809");

// Set the ORB listener host name to use to bind to.
serverProperties.setListenerHost("host.local.domain");

// Set the ORB listener port to use to bind to.
serverProperties.setListenerPort(9010);

// Turn off all MBeans for this process.
serverProperties.setMBeansEnabled(false);

Server server = ServerFactory.getInstance();

© Copyright IBM Corp. 2009, 2011 203

Embedding the catalog service

Any JVM setting that is flagged by the CatalogServerProperties.setCatalogServer
method can host the catalog service for eXtreme Scale. This method indicates to the
eXtreme Scale server runtime to instantiate the catalog service when the server is
started. The following code shows how to instantiate the eXtreme Scale catalog
server:
CatalogServerProperties catalogServerProperties =
ServerFactory.getCatalogProperties();
catalogServerProperties.setCatalogServer(true);

Server server = ServerFactory.getInstance();

Embedding the eXtreme Scale container

Issue the Server.createContainer method for any JVM to host multiple eXtreme
Scale containers. The following code shows how to instantiate an eXtreme Scale
container:
Server server = ServerFactory.getInstance();
DeploymentPolicy policy = DeploymentPolicyFactory.createDeploymentPolicy(

new File("META-INF/embeddedDeploymentPolicy.xml").toURI().toURL(),
new File("META-INF/embeddedObjectGrid.xml").toURI().toURL());

Container container = server.createContainer(policy);

Self-contained server process

You can start all the services together, which is useful for development and also
practical in production. By starting the services together, a single process does all
of the following: Starts the catalog service, starts a set of containers, and runs the
client connection logic. Starting the services in this way sorts out programming
issues prior to deploying in a distributed environment. The following code shows
how to instantiate a self-contained eXtreme Scale server:
CatalogServerProperties catalogServerProperties =
ServerFactory.getCatalogProperties();
catalogServerProperties.setCatalogServer(true);

Server server = ServerFactory.getInstance();
DeploymentPolicy policy = DeploymentPolicyFactory.createDeploymentPolicy(

new File("META-INF/embeddedDeploymentPolicy.xml").toURI().toURL(),
new File("META-INF/embeddedObjectGrid.xml").toURI().toURL());

Container container = server.createContainer(policy);

Embedding eXtreme Scale in WebSphere Application Server

The configuration for eXtreme Scale is set up automatically when you install
WebSphere Extended Deployment DataGrid in a WebSphere Application Server
environment. You are not required to set any properties before you access the
server to create a container. The following code shows how to instantiate an
eXtreme Scale server in WebSphere Application Server:
Server server = ServerFactory.getInstance();
DeploymentPolicy policy = DeploymentPolicyFactory.createDeploymentPolicy(

new File("META-INF/embeddedDeploymentPolicy.xml").toURI().toURL(),
new File("META-INF/embeddedObjectGrid.xml").toURI().toURL);

Container container = server.createContainer(policy);

For a step by step example on how to start an embedded catalog service and
container programmatically, see “Using the embedded server API” on page 205.

204 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

Using the embedded server API
With WebSphere eXtreme Scale, you can use a programmatic API for managing the
life cycle of embedded servers and containers. You can programmatically
configure the server with any of the options that you can also configure with the
command line options or file-based server properties. You can configure the
embedded server to be a container server, a catalog service, or both.

Before you begin

You must have a method for running code from within an already existing Java
virtual machine. The eXtreme Scale classes must be available through the class
loader tree.

About this task

You can run many administration tasks with the Administration API. One common
use of the API is as an internal server for storing Web application state. The Web
server can start an embedded WebSphere eXtreme Scale server, report the container
server to the catalog service, and the server is then added as a member of a larger
distributed grid. This usage can provide scalability and high availability to an
otherwise volatile data store.

You can programmatically control the complete life cycle of an embedded eXtreme
Scale server. The examples are as generic as possible and only show direct code
examples for the outlined steps.

Procedure
1. Obtain the ServerProperties object from the ServerFactory class and configure

any necessary options.
Every eXtreme Scale server has a set of configurable properties. When a server
starts from the command line, those properties are set to defaults, but you can
override several properties by providing an external source or file. In the
embedded scope, you can directly set the properties with a ServerProperties
object. You must set these properties before you obtain a server instance from
the ServerFactory class. The following example snippet obtains a
ServerProperties object, sets the CatalogServiceBootStrap field, and initializes
several optional server settings. See the API documentation for a list of the
configurable settings.
ServerProperties props = ServerFactory.getServerProperties();
props.setCatalogServiceBootstrap("host:port"); // required to connect to specific catalog service
props.setServerName("ServerOne"); // name server
props.setTraceSpecification("com.ibm.ws.objectgrid=all=enabled"); // Sets trace spec

2. If you want the server to be a catalog service, obtain the
CatalogServerProperties object.
Every embedded server can be a catalog service, a container server, or both a
container server and a catalog service. The following example obtains the
CatalogServerProperties object, enables the catalog service option, and
configures various catalog service settings.
CatalogServerProperties catalogProps = ServerFactory.getCatalogProperties();
catalogProps.setCatalogServer(true); // false by default, it is required to set as

// a catalog service
catalogProps.setQuorum(true); // enables / disables quorum

3. Obtain a Server instance from the ServerFactory class. The Server instance is a
process-scoped singleton that is responsible for managing the membership in
the grid. After this instance has been instantiated, this process is connected

Chapter 5. Administration APIs 205

and is highly available with the other servers in the grid. The following
example shows how to create the Server instance:
Server server = ServerFactory.getInstance();

Reviewing the previous example, the ServerFactory class provides a static
method that returns a Server instance. The ServerFactory class is intended to
be the only interface for obtaining a Server instance. Therefore, the class
ensures that the instance is a singleton, or one instance for each JVM or isolated
classloader. The getInstance method initializes the Server instance. You must
configure all the server properties before you initialize the instance. The Server
class is responsible for creating new Container instances. You can use both the
ServerFactory and Server classes for managing the life cycle of the embedded
Server instance.

4. Start a Container instance using the Server instance.
Before shards can be placed on an embedded server, you must create a
container on the server. The Server interface has a createContainer method
that takes a DeploymentPolicy argument. The following example uses the
server instance that you obtained to create a container using a created
DeploymentPolicy file. Note that Containers require a classloader that has the
application binaries available to it for serialization. You can make these
binaries available by calling the createContainer method with the Thread
context classloader set to the classloader that you want to use.
DeploymentPolicy policy = DeploymentPolicyFactory.createDeploymentPolicy
(new URL("file://urltodeployment.xml"),
new URL("file://urltoobjectgrid.xml"));
Container container = server.createContainer(policy);

5. Remove and clean up a container.
You can remove and clean up a container server by using the running the
teardown method on the obtained Container instance. Running the teardown
method on a container properly cleans up the container and removes the
container from the embedded server.
The process of cleaning up the container includes the movement and tearing
down of all the shards that are placed within that container. Each server can
contain many containers and shards. Cleaning up a container does not affect
the life cycle of the parent Server instance. The following example
demonstrates how to run the teardown method on a server. The teardown
method is made available through the ContainerMBean interface. By using the
ContainerMBean interface, if you no longer have programmatic access to this
container, you can still remove and clean up the container with its MBean. A
terminate method also exists on the Container interface, do not use this method
unless it is absolutely needed. This method is more forceful and does not
coordinate appropriate shard movement and clean up.
container.teardown();

6. Stop the embedded server.
When you stop an embedded server, you also stop any containers and shards
that are running on the server. When you stop an embedded server, you must
clean up all open connections and move or tear down all the shards. The
following example demonstrates how to stop a server and using the waitFor
method on the Server interface to ensure that the Server instance shuts down
completely. Similarly to the container example, the stopServer method is made
available through the ServerMBean interface. With this interface, you can stop
a server with the corresponding Managed Bean (MBean).

206 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

ServerFactory.stopServer(); // Uses the factory to kill the Server singleton
// or
server.stopServer(); // Uses the Server instance directly
server.waitFor(); // Returns when the server has properly completed

// its shutdown procedures

Full code example:
import java.net.MalformedURLException;
import java.net.URL;

import com.ibm.websphere.objectgrid.ObjectGridException;
import com.ibm.websphere.objectgrid.deployment.DeploymentPolicy;
import com.ibm.websphere.objectgrid.deployment.DeploymentPolicyFactory;
import com.ibm.websphere.objectgrid.server.Container;
import com.ibm.websphere.objectgrid.server.Server;
import com.ibm.websphere.objectgrid.server.ServerFactory;
import com.ibm.websphere.objectgrid.server.ServerProperties;

public class ServerFactoryTest {

public static void main(String[] args) {

try {

ServerProperties props = ServerFactory.getServerProperties();
props.setCatalogServiceBootstrap("catalogservice-hostname:catalogservice-port");
props.setServerName("ServerOne"); // name server
props.setTraceSpecification("com.ibm.ws.objectgrid=all=enabled"); // TraceSpec

/*
* In most cases, the server will serve as a container server only
* and will connect to an external catalog service. This is a more
* highly available way of doing things. The commented code excerpt
* below will enable this Server to be a catalog service.
*
*
* CatalogServerProperties catalogProps =
* ServerFactory.getCatalogProperties();
* catalogProps.setCatalogServer(true); // enable catalog service
* catalogProps.setQuorum(true); // enable quorum
*/

Server server = ServerFactory.getInstance();

DeploymentPolicy policy = DeploymentPolicyFactory.createDeploymentPolicy
(new URL("url to deployment xml"),

new URL("url to objectgrid xml file"));
Container container = server.createContainer(policy);

/*
* Shard will now be placed on this container if the deployment requirements are met.
* This encompasses embedded server and container creation.
*
* The lines below will simply demonstrate calling the cleanup methods
*/

container.teardown();
server.stopServer();
int success = server.waitFor();

} catch (ObjectGridException e) {
// Container failed to initialize

} catch (MalformedURLException e2) {
// invalid url to xml file(s)

}

}

}

Monitoring with the statistics API
The Statistics API is the direct interface to the internal statistics tree. Statistics are
disabled by default, but can be enabled by setting a StatsSpec interface. A StatsSpec
interface defines how WebSphere eXtreme Scale should monitor statistics.

Chapter 5. Administration APIs 207

About this task

You can use the local StatsAccessor API to query data and access statistics on any
ObjectGrid instance that is in the same Java virtual machine (JVM) as the running
code. For more information about the specific interfaces, see the API
documentation. Use the following steps to enable monitoring of the internal
statistics tree.

Procedure
1. Retrieve the StatsAccessor object. The StatsAccessor interface follows the

singleton pattern. So, apart from problems related to the classloader, one
StatsAccessor instance should exist for each JVM. This class serves as the main
interface for all local statistics operations. The following code is an example of
how to retrieve the accessor class. Call this operation before any other
ObjectGrid calls.
public class LocalClient
{

public static void main(String[] args) {

// retrieve a handle to the StatsAccessor
StatsAccessor accessor = StatsAccessorFactory.getStatsAccessor();

}

}

2. Set the data grid StatsSpec interface. Set this JVM to collect all statistics at the
ObjectGrid level only. You must ensure that an application enables all statistics
that might be needed before you begin any transactions. The following example
sets the StatsSpec interface using both a static constant field and using a spec
String. Using a static constant field is simpler because the field has already
defined the specification. However, by using a spec String, you can enable any
combination of statistics that are required.
public static void main(String[] args) {

// retrieve a handle to the StatsAccessor
StatsAccessor accessor = StatsAccessorFactory.getStatsAccessor();

// Set the spec via the static field
StatsSpec spec = new StatsSpec(StatsSpec.OG_ALL);
accessor.setStatsSpec(spec);

// Set the spec via the spec String
StatsSpec spec = new StatsSpec("og.all=enabled");
accessor.setStatsSpec(spec);

}

3. Send transactions to the data grid to force data to be collected for monitoring.
To collect useful data for statistics, you must send transactions to the data grid.
The following code excerpt inserts a record into MapA, which is in
ObjectGridA. Because the statistics are at the ObjectGrid level, any map within
the ObjectGrid yields the same results.
public static void main(String[] args) {

// retrieve a handle to the StatsAccessor
StatsAccessor accessor = StatsAccessorFactory.getStatsAccessor();

// Set the spec via the static field
StatsSpec spec = new StatsSpec(StatsSpec.OG_ALL);
accessor.setStatsSpec(spec);

208 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

ObjectGridManager manager =
ObjectGridmanagerFactory.getObjectGridManager();

ObjectGrid grid = manager.getObjectGrid("ObjectGridA");
Session session = grid.getSession();
Map map = session.getMap("MapA");

// Drive insert
session.begin();
map.insert("SomeKey", "SomeValue");
session.commit();

}

4. Query a StatsFact by using the StatsAccessor API. Every statistics path is
associated with a StatsFact interface. The StatsFact interface is a generic
placeholder that is used to organize and contain a StatsModule object. Before
you can access the actual statistics module, the StatsFact object must be
retrieved.
public static void main(String[] args)
{

// retrieve a handle to the StatsAccessor
StatsAccessor accessor = StatsAccessorFactory.getStatsAccessor();

// Set the spec via the static field
StatsSpec spec = new StatsSpec(StatsSpec.OG_ALL);
accessor.setStatsSpec(spec);

ObjectGridManager manager =
ObjectGridManagerFactory.getObjectGridManager();

ObjectGrid grid = manager.getObjectGrid("ObjectGridA");
Session session = grid.getSession();
Map map = session.getMap("MapA");

// Drive insert
session.begin();
map.insert("SomeKey", "SomeValue");
session.commit();

// Retrieve StatsFact

StatsFact fact = accessor.getStatsFact(new String[] {"EmployeeGrid"},
StatsModule.MODULE_TYPE_OBJECT_GRID);

}

5. Interact with the StatsModule object. The StatsModule object is contained
within the StatsFact interface. You can obtain a reference to the module by
using the StatsFact interface. Since the StatsFact interface is a generic interface,
you must cast the returned module to the expected StatsModule type. Because
this task collects eXtreme Scale statistics, the returned StatsModule object is cast
to an OGStatsModule type. After the module is cast, you have access to all of
the available statistics.
public static void main(String[] args) {

// retrieve a handle to the StatsAccessor
StatsAccessor accessor = StatsAccessorFactory.getStatsAccessor();

// Set the spec via the static field
StatsSpec spec = new StatsSpec(StatsSpec.OG_ALL);
accessor.setStatsSpec(spec);

ObjectGridManager manager =
ObjectGridmanagerFactory.getObjectGridManager();

ObjectGrid grid = manager.getObjectGrid("ObjectGridA");

Chapter 5. Administration APIs 209

Session session = grid.getSession();
Map map = session.getMap("MapA");

// Drive insert
session.begin();
map.insert("SomeKey", "SomeValue");
session.commit();

// Retrieve StatsFact
StatsFact fact = accessor.getStatsFact(new String[] {"EmployeeGrid"},

StatsModule.MODULE_TYPE_OBJECT_GRID);

// Retrieve module and time
OGStatsModule module = (OGStatsModule)fact.getStatsModule();
ActiveTimeStatistic timeStat =

module.getTransactionTime("Default", true);
double time = timeStat.getMeanTime();

}

210 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

Chapter 6. Integrating with Spring framework

Spring is a popular framework for developing Java applications. WebSphere
eXtreme Scale provides support to allow Spring to manage eXtreme Scale
transactions and configure the clients and servers comprising your deployed
in-memory data grid.

Spring managed native transactions

Spring provides container-managed transactions that are similar to a Java Platform,
Enterprise Edition application server. However, the Spring mechanism can plug in
different implementations. WebSphere eXtreme Scale provides transaction manager
integration which allows Spring to manage the ObjectGrid transaction life cycles.
See the information about native transactions in the Programming Guide for details.

Spring managed extension beans and namespace support

Also, eXtreme Scale integrates with Spring to allow Spring-style beans defined for
extension points or plug-ins. This feature provides more sophisticated
configurations and more flexibility for configuring the extension points.

In addition to Spring managed extension beans, eXtreme Scale provides a Spring
namespace called "objectgrid". Beans and built-in implementations are pre-defined
in this namespace, which makes it easier for users to configure eXtreme Scale.
Refer to “Spring extension beans and namespace support” on page 216 for more
details on these topics and a sample of how to start an eXtreme Scale container
server using Spring configurations.

Shard scope support

With the traditional style Spring configuration, an ObjectGrid bean can either be a
singleton type or prototype type. ObjectGrid also supports a new scope called the
"shard" scope. If a bean is defined as shard scope, then only one bean is created
per shard. All requests for beans with an ID or ids matching that bean definition in
the same shard will result in that one specific bean instance being returned by the
Spring container.

The following example shows that a
com.ibm.ws.objectgrid.jpa.plugins.JPAPropFactoryImpl bean is defined with scope
set to shard. Therefore, only one instance of the JPAPropFactoryImpl class is
created per shard.
<bean id="jpaPropFactory" class="com.ibm.ws.objectgrid.jpa.plugins.JPAPropFactoryImpl" scope="shard" />

Spring Web Flow

Spring Web Flow stores its session state in the HTTP Session by default. If a web
application is configured to use eXtreme Scale for session management then it is
used automatically by Spring to store this state and it is made fault tolerant in the
same manner as the session.

© Copyright IBM Corp. 2009, 2011 211

Packaging

The eXtreme Scale Spring extensions are in the ogspring.jar file. This Java archive
(JAR) file must be on the class path for Spring support to work. If a JEE
application that is running in a WebSphere Extended Deployment augmented
WebSphere Application Server Network Deployment, then the application should
place the spring.jar file and its associated files in the enterprise archive (EAR)
modules. You must also place the ogspring.jar file in the same location.

Native transactions
Spring is a popular framework for developing Java applications. WebSphere
eXtreme Scale provides support to allow Spring to manage eXtreme Scale
transactions and configure eXtreme Scale clients and servers.

Native transactions with WebSphere eXtreme Scale

Spring provides container-managed transactions along the style of a Java Platform,
Enterprise Edition application server but has the advantage that Springs
mechanism can have different implementations plugged in. This topic describes an
eXtreme Scale Platform Transaction manager that can be used with Spring. This
allows programmers to annotate their POJOs (plain old Java objects) and then have
Spring automatically acquire Sessions from eXtreme Scale and begin, commit,
rollback, suspend, and resume eXtreme Scale transactions. Spring transactions are
described more fully in Chapter 10 of the official Spring User Guide. The following
explains how to create an eXtreme Scale transaction manager and use it with
annotated POJOs. It also explains how to use this approach with client or local
eXtreme Scale as well as a collocated Data Grid style application.

Creating a transaction manager

eXtreme Scale provides an implementation of a Spring
PlatformTransactionManager. This manager can provide managed eXtreme Scale
sessions to POJOs managed by Spring. Through the use of annotations, Spring
manages those sessions for the POJOs in terms of transaction life cycle. The
following XML snippet shows how to create a transaction Manager:
<aop:aspectj-autoproxy/>
<tx:annotation-driven transaction-manager="transactionManager"/>

<bean id="ObjectGridManager"
class="com.ibm.websphere.objectgrid.ObjectGridManagerFactory"
factory-method="getObjectGridManager"/>

<bean id="ObjectGrid"
factory-bean="ObjectGridManager"
factory-method="createObjectGrid"/>

<bean id="transactionManager"
class="com.ibm.websphere.objectgrid.spring.ObjectGridSpringFactory"
factory-method="getLocalPlatformTransactionManager"/>

</bean>

<bean id="Service" class="com.ibm.websphere.objectgrid.spring.test.TestService">
<property name="txManager" ref+"transactionManager"/>
</bean>

This shows the transactionManager bean being declared and wired in to the
Service bean that will use Spring transactions. We will demonstrate this using
annotations and this is the reason for the tx:annotation clause at the beginning.

212 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/ch10.html

Obtaining an ObjectGrid Session for the current Spring
transaction

A POJO that has methods managed by Spring can now obtain the ObjectGrid
session for the current transaction using
Session s = txManager.getSession();

This returns the session for the POJO to use. Beans participating in the same
transaction will receive the same session when they call this method. Spring will
automatically handle begin for the Session and also automatically invoke commit
or rollback when necessary. You can obtain an ObjectGrid EntityManager also by
simply calling getEntityManager from the Session object.

A sample POJO using annotations

Here is a POJO that uses annotations to declare its transactional intentions to
Spring. You can see the class has a class level annotation indicating all methods by
default should use REQUIRED transaction semantics. The class implements an
interface with a method for all methods on the class. This is necessary for Spring
AOP to work when it cannot do bytecode weaving. The class has an instance
variable txManager that we wire to the ObjectGrid transaction manager using the
Spring xml file. Each method simply calls the txManager.getSession method to
obtain the Session to use for the method.The queryNewTx method is annotated to
indicate a REQUIRES_NEW semantic. This means any existing transaction will be
suspended and a new independent transaction created for that method.
@Transactional(propagation=Propagation.REQUIRED)
public class TestService implements ITestService
{

SpringLocalTxManager txManager;

public TestService()
{

}

public void initialize()
throws ObjectGridException

{
Session s = txManager.getSession();
ObjectMap m = s.getMap("TEST");
m.insert("Hello", "Billy");

}

public void update(String updatedValue)
throws ObjectGridException

{
Session s = txManager.getSession();
System.out.println("Update using " + s);
ObjectMap m = s.getMap("TEST");
String v = (String)m.get("Hello");
m.update("Hello", updatedValue);

}

public String query()
throws ObjectGridException

{
Session s = txManager.getSession();
System.out.println("Query using " + s);
ObjectMap m = s.getMap("TEST");
return (String)m.get("Hello");

}

@Transactional(propagation=Propagation.REQUIRES_NEW)
public String queryNewTx()

throws ObjectGridException
{

Session s = txManager.getSession();
System.out.println("QueryTX using " + s);
ObjectMap m = s.getMap("TEST");
return (String)m.get("Hello");

}

public void testRequiresNew(ITestService bean)
throws ObjectGridException

{

Chapter 6. Integrating with Spring framework 213

update("1");
String txValue = bean.query();
if(!txValue.equals("1"))
{

System.out.println("Requires didnt work");
throw new IllegalStateException("requires didn’t work");

}
String committedValue = bean.queryNewTx();
if(committedValue.equals("1"))
{

System.out.println("Requires new didnt work");
throw new IllegalStateException("requires new didn’t work");

}
}

public SpringLocalTxManager getTxManager() {
return txManager;

}

public void setTxManager(SpringLocalTxManager txManager) {
this.txManager = txManager;

}
}

Setting the ObjectGrid instance for a thread

A single Java Virtual Machine (JVM) can host many ObjectGrid instances. Each
primary shard placed in a JVM has its own ObjectGrid instance. A JVM acting as a
client to a remote ObjectGrid uses an ObjectGrid instance returned from the
connect method's ClientClusterContext to interact with that Grid. Before invoking a
method on a POJO using Spring transactions for ObjectGrid, the thread must be
primed with the ObjectGrid instance to use. The TransactionManager instance has
a method allowing a specific ObjectGrid instance to be specified. Once specified
then any subsequent txManager.getSession calls will returns Sessions for that
ObjectGrid instance.

Simple bootstrap for testing

The following example shows a sample main for exercising this capability:
ClassPathXmlApplicationContext ctx = new ClassPathXmlApplicationContext(new String[]

{"applicationContext.xml"});
SpringLocalTxManager txManager = (SpringLocalTxManager)ctx.getBean("transactionManager");
txManager.setObjectGridForThread(og);

ITestService s = (ITestService)ctx.getBean("Service");
s.initialize();
assertEquals(s.query(), "Billy");
s.update("Bobby");
assertEquals(s.query(), "Bobby");
System.out.println("Requires new test");
s.testRequiresNew(s);
assertEquals(s.query(), "1");

Here we use a Spring ApplicationContext. The ApplicationContext is used to
obtain a reference to the txManager and specify an ObjectGrid to use on this
thread. The code then obtains a reference to the service and invokes methods on it.
Each method call at this level causes Spring to create a Session and do
begin/commit calls around the method call. Any exceptions will cause a rollback.

New eXtreme Scale interfaces

This introduces a single new interface, SpringLocalTxManager. This interface is
implemented by the ObjectGrid Platform Transaction Manager and has all public
interfaces. The methods on this interface are for selecting the ObjectGrid instance
to use on a thread and obtaining a Session for the thread. Any POJOs using
ObjectGrid local transactions should be injected with a reference to this manager
instance and only a single instance need be created, that is, its scope should be
singleton.This instance is created using a static method on
ObjectGridSpringFactory. getLocalPlatformTransactionManager().

214 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

eXtreme Scale for JTA and global transactions

eXtreme Scale does not support JTA or 2 phase commit for various reasons mainly
to do with scalability. Thus, except at a last single-phase participant, ObjectGrid
does not interact in XA or JTA type global transactions. This platform manager is
intended to make using local ObjectGrid transactions as easy as possible for Spring
developers.

Spring managed extension beans

ObjectGrid includes an approach to declare POJOs to use as extension points in the
objectgrid.xml file. ObjectGrid provides a way to name the beans and then specify
the class name. ObjectGrid normally creates instances of the specified class and
uses those instances as the plug-in. ObjectGrid can now delegate to Spring to act as
the bean factory for obtaining instances of these plug-in objects. If an application
uses Spring then typically such POJOs have a requirement to be wired in to the
rest of the application.

ObjectGrid has been modified to allow an application to register a Spring Bean
Factory instance to use for a specific named ObjectGrid. The application should
create an instance of BeanFactory or a Spring application context and then register
it with ObjectGrid using the following static method:
void registerSpringBeanFactoryAdapter(String objectGridName, Object springBeanFactory)

This method specifies that if ObjectGrid finds an extension bean (such as an
ObjectTransformer, Loader, TransactionCallback, and so on) whose className
begins with the prefix {spring} then use the remainder of the name as a Spring
Bean name and obtain the bean instance using the Spring Bean Factory. ObjectGrid
can also create a Spring bean factory from a default spring xml configuration file.
If no bean factory was registered for a given ObjectGrid then ObjectGrid tries to
find an xml file called 'ObjectGridName'_spring.xml. For example, if your grid is
called GRID then the xml file is called '/GRID_spring.xml' and should be in the
class path in the root package. If this file is found then ObjectGrid constructs an
ApplicationContext using that file and constructs beans from that bean factory. As
example class name would be:
"{spring}MyLoaderBean"

This would cause ObjectGrid to ask Spring for a bean named "MyLoaderBean".
This approach can be used to specify Spring managed POJOs for any extension
point in ObjectGrid so long as the bean factory has been registered up front. The
ObjectGrid spring extensions are in the ogspring.jar file. This jar file must be on
the class path for spring support to work due. If a JavaEE application running in
an XD augmented ND then the application should place the spring.jar file and its
associated files in the EAR modules. The ogspring.jar must also be placed in the
same location.

Spring Webflow

Spring Webflow stores its session state in the HTTP Session by default. If a web
application is configured to use ObjectGrid for session management then
ObjectGrid will be used automatically by Spring to store this state and it will be
made fault tolerant in the same manner as the session.

Chapter 6. Integrating with Spring framework 215

Spring extension beans and namespace support
WebSphere eXtreme Scale provides a feature to declare plain old Java objects
(POJOs) to use as extension points in the objectgrid.xml file and a way to name
the beans and then specify the class name. Normally, instances of the specified
class are created, and those objects are used as the plug-ins. Now, eXtreme Scale
can delegate to Spring to obtain instances of these plug-in objects. If an application
uses Spring then typically such POJOs have a requirement to be wired in to the
rest of the application.

In some cases, you must use Spring to configure certain plug-in objects. Take the
following configuration as an example:
<objectGrid name="Grid">

<bean id="TransactionCallback" className="com.ibm.websphere.objectgrid.jpa.JPATxCallback">
<property name="persistenceUnitName" type="java.lang.String" value="employeePU" />

</bean>
...

</objectGrid>

The built-in TransactionCallback implementation,
com.ibm.websphere.objectgrid.jpa.JPATxCallback class, is configured as the
TransactionCallback class. This class is configured with one property
persistenceUnitName as shown in the previous example. The JPATxCallback class
also has the JPAPropertyFactory attribute, which is of type java.lang.Object. The
ObjectGrid XML configuration cannot support this type of configuration.

The eXtreme Scale Spring integration solves this problem by delegating the bean
creation to the Spring framework. The revised configuration follows:
<objectGrid name="Grid">

<bean id="TransactionCallback" className="{spring}jpaTxCallback"/>
...

</objectGrid>

The spring file for the "Grid" object contains the following information:
<bean id="jpaTxCallback" class="com.ibm.websphere.objectgrid.jpa.JPATxCallback" scope="shard">

<property name="persistenceUnitName" value="employeeEMPU"/>
<property name="JPAPropertyFactory" ref ="jpaPropFactory"/>

</bean>

<bean id="jpaPropFactory" class="com.ibm.ws.objectgrid.jpa.plugins.
JPAPropFactoryImpl" scope="shard">
</bean>

Here, the TransactionCallback is specified as {spring}jpaTxCallback, and the
jpaTxCallback and jpaPropFactory bean are configured in the spring file as shown
in the previous example. The Spring configuration makes it possible to configure a
JPAPropertyFactory bean as a parameter of the JPATxCallback object.

Default Spring bean factory

When eXtreme Scale finds a plug-in or an extension bean (such as an
ObjectTransformer, Loader, TransactionCallback, and so on) with a classname value
that begins with the prefix {spring}, then eXtreme Scale uses the remainder of the
name as a Spring Bean name and obtain the bean instance using the Spring Bean
Factory.

By default, if no bean factory was registered for a given ObjectGrid, then it tries to
find an ObjectGridName_spring.xml file. For example, if your data grid is called
"Grid" then the XML file is called /Grid_spring.xml. This file should be in the class

216 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

path or in a META-INF directory which is in the class path. If this file is found, then
eXtreme Scale constructs an ApplicationContext using that file and constructs
beans from that bean factory.

Custom Spring bean factory

WebSphere eXtreme Scale also provides an ObjectGridSpringFactory API to register
a Spring Bean Factory instance to use for a specific named ObjectGrid. This API
registers an instance of BeanFactory with eXtreme Scale using the following static
method:

void registerSpringBeanFactoryAdapter(String objectGridName, Object
springBeanFactory)

Namespace support

Since version 2.0, Spring has a mechanism for schema-based extensions to the basic
Spring XML format for defining and configuring beans. ObjectGrid uses this new
feature to define and configure ObjectGrid beans. With Spring XML schema
extension, some of the built-in implementations of eXtreme Scale plug-ins and
some ObjectGrid beans are predefined in the "objectgrid" namespace. When writing
the Spring configuration files, you do not have to specify the full class name of the
built-ins. Instead, you can reference the predefined beans.

Also, with the attributes of the beans defined in the XML schema, you are less
likely to provide a wrong attribute name. XML validation based on the XML
schema can catch these kind of errors earlier in the development cycle.

These beans defined in the XML schema extensions are:
v transactionManager
v register
v server
v catalog
v container
v JPALoader
v JPATxCallback
v JPAEntityLoader
v LRUEvictor
v LFUEvictor
v HashIndex

These beans are defined in the objectgrid.xsd XML schema. This XSD file is
shipped as com/ibm/ws/objectgrid/spring/namespace/objectgrid.xsd file in the
ogspring.jar file . For detailed descriptions of the XSD file and the beans defined
in the XSD file, see the information about the Spring descriptor file in the
Administration Guide.

Still use the JPATxCallback example from the previous section. In the previous
section, the JPATxCallback bean is configured as the following:
<bean id="jpaTxCallback" class="com.ibm.websphere.objectgrid.jpa.JPATxCallback" scope="shard">

<property name="persistenceUnitName" value="employeeEMPU"/>
<property name="JPAPropertyFactory" ref ="jpaPropFactory"/>

Chapter 6. Integrating with Spring framework 217

</bean>

<bean id="jpaPropFactory" class="com.ibm.ws.objectgrid.jpa.plugins.JPAPropFactoryImpl" scope="shard">
</bean>

Using this namespace feature, the spring XML configuration can be written as the
following:
<objectgrid:JPATxCallback id="jpaTxCallback" persistenceUnitName="employeeEMPU"
jpaPropertyFactory="jpaPropFactory" />

<bean id="jpaPropFactory" class="com.ibm.ws.objectgrid.jpa.plugins.JPAPropFactoryImpl"
scope="shard">
</bean>

Notice here that instead of specifying the
"com.ibm.websphere.objectgrid.jpa.JPATxCallback" class as in the previous
example, we directly use the pre-defined "objectgrid:JPATxCallback" bean. As you
can see, this configuration is less verbose and more friendly to error checking.

Starting container server with Spring extension beans

In this example, we will show how to start an ObjectGrid server using ObjectGrid
Spring managed extension beans and namespace support.

ObjectGrid XML file

First of all, define a very simple ObjectGrid XML file which contains one
ObjectGrid "Grid" and one map "Test". The ObjectGrid has an
ObjectGridEventListener plug-in called "partitionListener", and the map "Test" has
an Evictor plugged in called "testLRUEvictor". Notice both the
ObjectGridEventListener plug-in and Evictor plug-in are configured using Spring
as their names contain "{spring}".
<?xml version="1.0" encoding="UTF-8"?>
<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">

<objectGrids>
<objectGrid name="Grid">

<bean id="ObjectGridEventListener" className="{spring}partitionListener" />
<backingMap name="Test" pluginCollectionRef="test" />

</objectGrid>
</objectGrids>

<backingMapPluginCollections>
<backingMapPluginCollection id="test">

<bean id="Evictor" className="{spring}testLRUEvictor"/>
</backingMapPluginCollection>

</backingMapPluginCollections>
</objectGridConfig>

ObjectGrid deployment XML file

Now, create a simple ObjectGrid deployment XML file as follows. It partitions the
ObjectGrid into 5 partitions, and no replica is required.
<?xml version="1.0" encoding="UTF-8"?>
<deploymentPolicy xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/deploymentPolicy ../deploymentPolicy.xsd"
xmlns="http://ibm.com/ws/objectgrid/deploymentPolicy">

<objectgridDeployment objectgridName="Grid">
<mapSet name="mapSet" numInitialContainers="1" numberOfPartitions="5" minSyncReplicas="0"

maxSyncReplicas="1" maxAsyncReplicas="0">
<map ref="Test"/>

</mapSet>
</objectgridDeployment>

</deploymentPolicy>

218 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

ObjectGrid Spring XML file

Now we will use both ObjectGrid Spring managed extension beans and namespace
support features to configure the ObjectGrid beans. The spring xml file is named
"Grid_spring.xml". Notice two schemas are included in the XML file:
spring-beans-2.0.xsd is for using the Spring managed beans, and objectgrid.xsd is
for using the beans predefined in the objectgrid namespace.
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"
xmlns:tx="http://www.springframework.org/schema/tx"
xmlns:objectgrid="http://www.ibm.com/schema/objectgrid"
xsi:schemaLocation="
http://www.ibm.com/schema/objectgrid

http://www.ibm.com/schema/objectgrid/objectgrid.xsd
http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.0.xsd">

<objectgrid:register id="ogregister" gridname="Grid"/>

<objectgrid:server id="server" isCatalog="true" name="server">
<objectgrid:catalog host="localhost" port="2809"/>

</objectgrid:server>

<objectgrid:container id="container"
objectgridxml="com/ibm/ws/objectgrid/test/springshard/objectgrid.xml"

deploymentxml="com/ibm/ws/objectgrid/test/springshard/deployment.xml"
server="server"/>

<objectgrid:LRUEvictor id="testLRUEvictor" numberOfLRUQueues="31"/>

<bean id="partitionListener"
class="com.ibm.websphere.objectgrid.springshard.ShardListener" scope="shard"/>

</beans>

There were 6 beans defined in this spring XML file:
1. objectgrid:register: This register the default bean factory for the ObjectGrid

"Grid".
2. objectgrid:server: This defines an ObjectGrid server with name "server". This

server will also provide catalog service since it has an objectgrid:catalog bean
nested in it.

3. objectgrid:catalog: This defines an ObjectGrid catalog service endpoint, which is
set to "localhost:2809".

4. objectgrid:container: This defines an ObjectGrid container with specified
objectgrid XML file and deployment XML file as we discussed before. The
server property specifies which server this container is hosted in.

5. objectgrid:LRUEvictor: This defines an LRUEvictor with the number of LRU
queues to use set to 31.

6. bean partitionListener: This defines a ShardListener plug-in. This class is a class
plugged in by users, so it cannot use the pre-defined beans. Also this scope of
the bean is set to "shard", which means there is only one instance of this
ShardListener per ObjectGrid shard.

Starting the server

The snippet below starts the ObjectGrid server, which hosts both the container
service and the catalog service. As we can see, the only method we need to call to

Chapter 6. Integrating with Spring framework 219

start the server is to get a bean "container" from the bean factory. This simplifies
the programming complexity by moving most of the logic into Spring
configuration.
public class ShardServer extends TestCase
{

Container container;
org.springframework.beans.factory.BeanFactory bf;

public void startServer(String cep)
{

try
{

bf = new org.springframework.context.support.ClassPathXmlApplicationContext(
"/com/ibm/ws/objectgrid/test/springshard/Grid_spring.xml", ShardServer.class);

container = (Container)bf.getBean("container");
}
catch(Exception e)
{

throw new ObjectGridRuntimeException("Cannot start OG container", e);
}

}

public void stopServer()
{

if(container != null)
container.teardown();

}
}

220 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

Chapter 7. Security API

WebSphere eXtreme Scale adopts an open security architecture. It provides a basic
security framework for authentication, authorization, and transport security, and
requires users to implement plug-ins to complete the security infrastructure.

The following image shows the basic flow of client authentication and
authorization for an eXtreme Scale server.

The authentication flow and authorization flow are as follows.

Authentication flow

1. The authentication flow starts with an eXtreme Scale client getting a credential.
This is done by the
com.ibm.websphere.objectgrid.security.plugins.CredentialGenerator plug-in.

2. A CredentialGenerator object knows how to generate a valid client credential,
for example, a user ID and password pair, Kerberos ticket, and so on. This
generated credential is sent back to the client.

3. After the client retrieves the Credential object using the CredentialGenerator
object, this Credential object is sent along with the eXtreme Scale request to the
eXtreme Scale server.

4. The eXtreme Scale server authenticates the Credential object before processing
the eXtreme Scale request. Then the server uses the Authenticator plug-in to
authenticate the Credential object.

5. The Authenticator plug-in represents an interface to the user registry, for
example, a Lightweight Directory Access Protocol (LDAP) server or an
operating system user registry. The Authenticator consults the user registry and
makes authentication decisions.

6. If the authentication is successful, a Subject object is returned to represent this
client.
Authorization flow

WebSphere eXtreme Scale adopts a permission-based authorization mechanism,
and has different permission categories represented by different permission
classes. For example, a com.ibm.websphere.objectgrid.security.MapPermission
object represents permissions to read, write, insert, invalidate, and remove the
data entries in an ObjectMap. Because WebSphere eXtreme Scale supports Java

ObjectGrid
client

Credential
generator

1. Get
credential

2. Credential

Server
runtime

Authenticator

ObjectGrid
authorization

3. Send
credential

4. Credential

6. Subject

9. True/false

7. Subject
and Permission

ObjectGrid Shard (Server)

User
registry

Authorization
service

5. Credential

8. Subject
and
permission

Figure 6. Flow of client authentication and authorization

© Copyright IBM Corp. 2009, 2011 221

Authentication and Authorization Service (JAAS) authorization out-of-box, you
can use JAAS to handle authorization by providing authorization policies.
Also, eXtreme Scale supports custom authorizations. Custom authorizations are
plugged in by the plug-in
com.ibm.websphere.objectgrid.security.plugins.ObjectGridAuthorization. The
flow of the customer authorization is as follows.

7. The server runtime sends the Subject object and the required permission to the
authorization plug-in.

8. The authorization plug-in consults the Authorization service and makes an
authorization decision. If permission is granted for this Subject object, a value
of true is returned, otherwise falseis returned.

9. This authorization decision, true or false, is returned to the server runtime.

Security implementation

The topics in this section discuss how to program a secure WebSphere eXtreme
Scale deployment and how to program the plug-in implementations. The section is
organized based on the various security features. In each subtopic, you will learn
about relevant plug-ins and how to implement the plug-ins. In the authentication
section, you will see how to connect to a secure WebSphere eXtreme Scale
deployment environment.

Client Authentication: The client authentication topic describes how a WebSphere
eXtreme Scale client gets a credential and how a server authenticates the client. It
will also discuss how a WebSphere eXtreme Scale client connects to a secure
WebSphere eXtreme Scale server.

Authorization: The authorization topic explains how to use the
ObjectGridAuthorization to do customer authorization besides JAAS authorization.

Grid Authentication: The data grid authentication topic discusses how you can use
SecureTokenManager to securely transport server secrets.

Java Management Extensions (JMX) programming: When the WebSphere eXtreme
Scale server is secured, the JMX client might need to send a JMX credential to the
server.

Client authentication programming
For authentication, WebSphere eXtreme Scale provides a runtime to send the
credential from the client to the server side, and then calls the authenticator
plug-in to authenticate the users.

WebSphere eXtreme Scale requires you to implement the following plug-ins to
complete the authentication.
v Credential: A Credential represents a client credential, such as a user ID and

password pair.
v CredentialGenerator: A CredentialGenerator represents a credential factory to

generate the credential.
v Authenticator: An Authenticator authenticates the client credential and retrieves

client information.

222 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

Credential and CredentialGenerator plug-ins

When an eXtreme Scale client connects to a server that requires authentication, the
client is required to provide a client credential. A client credential is represented by
a com.ibm.websphere.objectgrid.security.plugins.Credential interface. A client
credential can be a user name and password pair, a Kerberos ticket, a client
certificate, or data in any format that the client and server agree upon. See the
information about the Credential API in the API documentation for more details.
This interface explicitly defines the equals(Object) and hashCode methods. These
two methods are important because the authenticated Subject objects are cached by
using the Credential object as the key on the server side. WebSphere eXtreme Scale
also provides a plug-in to generate a credential. This plug-in is represented by the
com.ibm.websphere.objectgrid.security.plugins.CredentialGenerator interface and is
useful when the credential is can expire. In this case, the getCredential method is
called to renew a credential.

The Credential interface explicitly defines the equals(Object) and hashCode
methods. These two methods are important because the authenticated Subject
objects are cached by using the Credential object as the key on the server side.

You may also use the provided plug-in to generate a credential. This plug-in is
represented by the
com.ibm.websphere.objectgrid.security.plugins.CredentialGenerator interface, and is
useful when the credential can expire. In this case, the getCredential method is
called to renew a credential. See the API documentation for more details.

There are three provided default implementations for the Credential interfaces:
v The

com.ibm.websphere.objectgrid.security.plugins.builtins.UserPasswordCredential
implementation, which contains a user ID and password pair.

v The com.ibm.websphere.objectgrid.security.plugins.builtins.WSTokenCredential
implementation, which contains WebSphere Application Server-specific
authentication and authorization tokens. These tokens can be used to propagate
the security attributes across the application servers in the same security
domain.

WebSphere eXtreme Scale also provides a plug-in to generate a credential. This
plug-in is represented by the
com.ibm.websphere.objectgrid.security.plugins.CredentialGenerator
interface.WebSphere eXtreme Scale provides two default built-in implementations:
v The com.ibm.websphere.objectgrid.security.plugins.builtins.

UserPasswordCredentialGenerator constructor takes a user ID and a password.
When the getCredential method is called, it returns a UserPasswordCredential
object that contains the user ID and password.

v The com.ibm.websphere.objectgrid.security.plugins.builtins.
WSTokenCredentialGenerator represents a credential (security token) generator
when running in WebSphere Application Server. When the getCredential method
is called, the Subject that is associated with the current thread is retrieved. Then
the security information in this Subject object is converted into a
WSTokenCredential object. You can specify whether to retrieve a runAs subject
or a caller subject from the thread by using the constant
WSTokenCredentialGenerator.RUN_AS_SUBJECT or
WSTokenCredentialGenerator.CALLER_SUBJECT.

UserPasswordCredential and UserPasswordCredentialGenerator

Chapter 7. Security API 223

For testing purposes, WebSphere eXtreme Scale provides the following plug-in
implementations:
1.

com.ibm.websphere.objectgrid.security.plugins.builtins.UserPasswordCredential

2.
com.ibm.websphere.objectgrid.security.plugins.builtins.UserPasswordCredentialGenerator

The user password credential stores a user ID and password. The user password
credential generator then contains this user ID and password.

The following example code shows how to implement these two plug-ins.
UserPasswordCredential.java
// This sample program is provided AS IS and may be used, executed, copied and modified
// without royalty payment by customer
// (a) for its own instruction and study,
// (b) in order to develop applications designed to run with an IBM WebSphere product,
// either for customer’s own internal use or for redistribution by customer, as part of such an
// application, in customer’s own products.
// Licensed Materials - Property of IBM
// 5724-J34 © COPYRIGHT International Business Machines Corp. 2007
package com.ibm.websphere.objectgrid.security.plugins.builtins;

import com.ibm.websphere.objectgrid.security.plugins.Credential;

/**
* This class represents a credential containing a user ID and password.
*
* @ibm-api
* @since WAS XD 6.0.1
*
* @see Credential
* @see UserPasswordCredentialGenerator#getCredential()
*/
public class UserPasswordCredential implements Credential {

private static final long serialVersionUID = 1409044825541007228L;

private String ivUserName;

private String ivPassword;

/**
* Creates a UserPasswordCredential with the specified user name and
* password.
*
* @param userName the user name for this credential
* @param password the password for this credential
*
* @throws IllegalArgumentException if userName or password is <code>null</code>
*/
public UserPasswordCredential(String userName, String password) {

super();
if (userName == null || password == null) {

throw new IllegalArgumentException("User name and password cannot be null.");
}
this.ivUserName = userName;
this.ivPassword = password;

}

/**
* Gets the user name for this credential.
*
* @return the user name argument that was passed to the constructor
* or the <code>setUserName(String)</code>
* method of this class
*
* @see #setUserName(String)
*/
public String getUserName() {

return ivUserName;
}

/**
* Sets the user name for this credential.
*
* @param userName the user name to set.
*
* @throws IllegalArgumentException if userName is <code>null</code>
*/
public void setUserName(String userName) {

if (userName == null) {
throw new IllegalArgumentException("User name cannot be null.");

}
this.ivUserName = userName;

}

224 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

/**
* Gets the password for this credential.
*
* @return the password argument that was passed to the constructor
* or the <code>setPassword(String)</code>
* method of this class
*
* @see #setPassword(String)
*/
public String getPassword() {

return ivPassword;
}

/**
* Sets the password for this credential.
*
* @param password the password to set.
*
* @throws IllegalArgumentException if password is <code>null</code>
*/
public void setPassword(String password) {

if (password == null) {
throw new IllegalArgumentException("Password cannot be null.");

}
this.ivPassword = password;

}

/**
* Checks two UserPasswordCredential objects for equality.
* <p>
* Two UserPasswordCredential objects are equal if and only if their user names
* and passwords are equal.
*
* @param o the object we are testing for equality with this object.
*
* @return <code>true</code> if both UserPasswordCredential objects are equivalent.
*
* @see Credential#equals(Object)
*/
public boolean equals(Object o) {

if (this == o) {
return true;

}
if (o instanceof UserPasswordCredential) {

UserPasswordCredential other = (UserPasswordCredential) o;
return other.ivPassword.equals(ivPassword) && other.ivUserName.equals(ivUserName);

}

return false;
}

/**
* Returns the hashcode of the UserPasswordCredential object.
*
* @return the hash code of this object
*
* @see Credential#hashCode()
*/
public int hashCode() {

return ivUserName.hashCode() + ivPassword.hashCode();
}

}

UserPasswordCredentialGenerator.java
// This sample program is provided AS IS and may be used, executed, copied and modified
// without royalty payment by customer
// (a) for its own instruction and study,
// (b) in order to develop applications designed to run with an IBM WebSphere product,
// either for customer’s own internal use or for redistribution by customer, as part of such an
// application, in customer’s own products.
// Licensed Materials - Property of IBM
// 5724-J34 © COPYRIGHT International Business Machines Corp. 2007
package com.ibm.websphere.objectgrid.security.plugins.builtins;

import java.util.StringTokenizer;

import com.ibm.websphere.objectgrid.security.plugins.Credential;
import com.ibm.websphere.objectgrid.security.plugins.CredentialGenerator;

/**
* This credential generator creates <code>UserPasswordCredential</code> objects.
* <p>
* UserPasswordCredentialGenerator has a one to one relationship with
* UserPasswordCredential because it can only create a UserPasswordCredential
* representing one identity.
*
* @since WAS XD 6.0.1
* @ibm-api
*
* @see CredentialGenerator
* @see UserPasswordCredential

Chapter 7. Security API 225

*/
public class UserPasswordCredentialGenerator implements CredentialGenerator {

private String ivUser;

private String ivPwd;

/**
* Creates a UserPasswordCredentialGenerator with no user name or password.
*
* @see #setProperties(String)
*/
public UserPasswordCredentialGenerator() {

super();
}

/**
* Creates a UserPasswordCredentialGenerator with a specified user name and
* password
*
* @param user the user name
* @param pwd the password
*/
public UserPasswordCredentialGenerator(String user, String pwd) {

ivUser = user;
ivPwd = pwd;

}

/**
* Creates a new <code>UserPasswordCredential</code> object using this
* object’s user name and password.
*
* @return a new <code>UserPasswordCredential</code> instance
*
* @see CredentialGenerator#getCredential()
* @see UserPasswordCredential
*/
public Credential getCredential() {

return new UserPasswordCredential(ivUser, ivPwd);
}

/**
* Gets the password for this credential generator.
*
* @return the password argument that was passed to the constructor
*/
public String getPassword() {

return ivPwd;
}

/**
* Gets the user name for this credential.
*
* @return the user argument that was passed to the constructor
* of this class
*/
public String getUserName() {

return ivUser;
}
/**
* Sets additional properties namely a user name and password.
*
* @param properties a properties string with a user name and
* a password separated by a blank.
*
* @throws IllegalArgumentException if the format is not valid
*/
public void setProperties(String properties) {

StringTokenizer token = new StringTokenizer(properties, " ");
if (token.countTokens() != 2) {

throw new IllegalArgumentException(
"The properties should have a user name and password and separated by a blank.");

}

ivUser = token.nextToken();
ivPwd = token.nextToken();

}
/**
* Checks two UserPasswordCredentialGenerator objects for equality.
* <p>
* Two UserPasswordCredentialGenerator objects are equal if and only if
* their user names and passwords are equal.
*
* @param obj the object we are testing for equality with this object.
*
* @return <code>true</code> if both UserPasswordCredentialGenerator objects
* are equivalent.
*/
public boolean equals(Object obj) {

if (obj == this) {
return true;

226 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

}

if (obj != null && obj instanceof UserPasswordCredentialGenerator) {
UserPasswordCredentialGenerator other = (UserPasswordCredentialGenerator) obj;

boolean bothUserNull = false;
boolean bothPwdNull = false;

if (ivUser == null) {
if (other.ivUser == null) {

bothUserNull = true;
} else {

return false;
}

}

if (ivPwd == null) {
if (other.ivPwd == null) {

bothPwdNull = true;
} else {

return false;
}

}

return (bothUserNull || ivUser.equals(other.ivUser)) && (bothPwdNull || ivPwd.equals(other.ivPwd));
}

return false;
}

/**
* Returns the hashcode of the UserPasswordCredentialGenerator object.
*
* @return the hash code of this object
*/
public int hashCode() {

return ivUser.hashCode() + ivPwd.hashCode();
}

}

The UserPasswordCredential class contains two attributes: user name and
password. The UserPasswordCredentialGenerator serves as a factory that contains
the UserPasswordCredential objects.

WSTokenCredential and WSTokenCredentialGenerator

When the WebSphere eXtreme Scale clients and servers are all deployed in
WebSphere Application Server, the client application can use these two built-in
implementations when the following conditions are satisfied:
1. WebSphere Application Server global security is turned on.
2. All WebSphere eXtreme Scale clients and servers are running in WebSphere

Application Server Java virtual machines.
3. The application servers are in the same security domain.
4. The client is already authenticated in WebSphere Application Server.

In this situation, the client can use the
com.ibm.websphere.objectgrid.security.plugins.builtins.
WSTokenCredentialGenerator class to generate a credential. The server uses the
WSAuthenticator implementation class to authenticate the credential.

This scenario takes advantage of the fact that the eXtreme Scale client has already
been authenticated. Because the application servers that have the servers are in the
same security domain as the application servers that house the clients, the security
tokens can be propagated from the client to the server so that the same user
registry does not need to be authenticated again.

Note: Do not assume that a CredentialGenerator always generates the same
credential. For an expirable and refreshable credential, the CredentialGenerator
should be able to generate the latest valid credential to make sure the

Chapter 7. Security API 227

authentication succeeds. One example is using the Kerberos ticket as a Credential
object. When the Kerberos ticket refreshes, the CredentialGenerator should retrieve
the refreshed ticket when CredentialGenerator.getCredential is called.

Authenticator plug-in

After the eXtreme Scale client retrieves the Credential object using the
CredentialGenerator object, this client Credential object is sent along with the client
request to the eXtreme Scale server. The server authenticates the Credential object
before processing the request. If the Credential object is authenticated successfully,
a Subject object is returned to represent this client.

This Subject object is then cached, and it expires after its lifetime reaches the
session timeout value. The login session timeout value can be set by using the
loginSessionExpirationTime property in the cluster XML file. For example, setting
loginSessionExpirationTime="300" makes the Subject object expire in 300 seconds.

This Subject object is then used for authorizing the request, which is shown later.
An eXtreme Scale server uses the Authenticator plug-in to authenticate the
Credential object. See the information about the Authenticator in the API
documentation for more details.

The Authenticator plug-in is where the eXtreme Scale runtime authenticates the
Credential object from the client user registry, for example, a Lightweight Directory
Access Protocol (LDAP) server.

WebSphere eXtreme Scale does not provide an immediately available user registry
configuration. The configuration and management of user registry is left outside of
WebSphere eXtreme Scale for simplicity and flexibility. This plug-in implements
connecting and authenticating to the user registry. For example, an Authenticator
implementation extracts the user ID and password from the credential, uses them
to connect and validate to an LDAP server, and creates a Subject object as a result
of the authentication. The implementation might use JAAS login modules. A
Subject object is returned as a result of authentication.

Notice that this method creates two exceptions: InvalidCredentialException and
ExpiredCredentialException. The InvalidCredentialException exception indicates
that the credential is not valid. The ExpiredCredentialException exception indicates
that the credential expired. If one of these two exceptions result from the
authenticate method, the exceptions are sent back to the client. However, the client
runtime handles these two exceptions differently:
v If the error is an InvalidCredentialException exception, the client run time

displays this exception. Your application must handle the exception. You can
correct the CredentialGenerator, for example, and then retry the operation.

v If the error is an ExpiredCredentialException exception, and the retry count is
not 0, the client run time calls the CredentialGenerator.getCredential method
again, and sends the new Credential object to the server. If the new credential
authentication succeeds, the server processes the request. If the new credential
authentication fails, the exception is sent back to the client. If the number of
authentication retries reaches the supported value and the client still gets an
ExpiredCredentialException exception, the ExpiredCredentialException exception
results. Your application must handle the error.

228 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

The Authenticator interface provides great flexibility. You can implement the
Authenticator interface in your own specific way. For example, you can implement
this interface to support two different user registries.

WebSphere eXtreme Scale provides sample authenticator plug-in implementations.
Except for the WebSphere Application Server authenticator plug-in, the other
implementations are only samples for testing purposes.

KeyStoreLoginAuthenticator

This example uses an eXtreme Scale built-in implementation:
KeyStoreLoginAuthenticator, which is for testing and sample purposes (a key store
is a simple user registry and should not be used for a production environment).
Again, the class is displayed to further demonstrate how to implement an
authenticator.
KeyStoreLoginAuthenticator.java
// This sample program is provided AS IS and may be used, executed, copied and modified
// without royalty payment by customer
// (a) for its own instruction and study,
// (b) in order to develop applications designed to run with an IBM WebSphere product,
// either for customer’s own internal use or for redistribution by customer, as part of such an
// application, in customer’s own products.
// Licensed Materials - Property of IBM
// 5724-J34 © COPYRIGHT International Business Machines Corp. 2007

package com.ibm.websphere.objectgrid.security.plugins.builtins;

import javax.security.auth.Subject;
import javax.security.auth.login.LoginContext;
import javax.security.auth.login.LoginException;

import com.ibm.websphere.objectgrid.security.plugins.Authenticator;
import com.ibm.websphere.objectgrid.security.plugins.Credential;
import com.ibm.websphere.objectgrid.security.plugins.ExpiredCredentialException;
import com.ibm.websphere.objectgrid.security.plugins.InvalidCredentialException;
import com.ibm.ws.objectgrid.Constants;
import com.ibm.ws.objectgrid.ObjectGridManagerImpl;
import com.ibm.ws.objectgrid.security.auth.callback.UserPasswordCallbackHandlerImpl;

/**
* This class is an implementation of the <code>Authenticator</code> interface
* when a user name and password are used as a credential.
* <p>
* When user ID and password authentication is used, the credential passed to the
* <code>authenticate(Credential)</code> method is a UserPasswordCredential object.
* <p>
* This implementation will use a <code>KeyStoreLoginModule</code> to authenticate
* the user into the key store using the JAAS login module "KeyStoreLogin". The key
* store can be configured as an option to the <code>KeyStoreLoginModule</code>
* class. Please see the <code>KeyStoreLoginModule</code> class for more details
* about how to set up the JAAS login configuration file.
* <p>
* This class is only for sample and quick testing purpose. Users should
* write your own Authenticator implementation which can fit better into
* the environment.
*
* @ibm-api
* @since WAS XD 6.0.1
*
* @see Authenticator
* @see KeyStoreLoginModule
* @see UserPasswordCredential
*/
public class KeyStoreLoginAuthenticator implements Authenticator {

/**
* Creates a new KeyStoreLoginAuthenticator.
*/
public KeyStoreLoginAuthenticator() {

super();
}

/**
* Authenticates a <code>UserPasswordCredential</code>.
* <p>
* Uses the user name and password from the specified UserPasswordCredential
* to login to the KeyStoreLoginModule named "KeyStoreLogin".
*
* @throws InvalidCredentialException if credential isn’t a
* UserPasswordCredential or some error occurs during processing
* of the supplied UserPasswordCredential

Chapter 7. Security API 229

*
* @throws ExpiredCredentialException if credential is expired. This exception
* is not used by this implementation
*
* @see Authenticator#authenticate(Credential)
* @see KeyStoreLoginModule
*/
public Subject authenticate(Credential credential) throws InvalidCredentialException,
ExpiredCredentialException {

if (credential == null) {
throw new InvalidCredentialException("Supplied credential is null");

}

if (! (credential instanceof UserPasswordCredential)) {
throw new InvalidCredentialException("Supplied credential is not a UserPasswordCredential");

}

UserPasswordCredential cred = (UserPasswordCredential) credential;
LoginContext lc = null;
try {

lc = new LoginContext("KeyStoreLogin",
new UserPasswordCallbackHandlerImpl(cred.getUserName(), cred.getPassword().toCharArray()));

lc.login();

Subject subject = lc.getSubject();

return subject;
}
catch (LoginException le) {

throw new InvalidCredentialException(le);
}
catch (IllegalArgumentException ile) {

throw new InvalidCredentialException(ile);
}

}
}

KeyStoreLoginModule.java
// This sample program is provided AS IS and may be used, executed, copied and modified
// without royalty payment by customer
// (a) for its own instruction and study,
// (b) in order to develop applications designed to run with an IBM WebSphere product,
// either for customer’s own internal use or for redistribution by customer, as part of such an
// application, in customer’s own products.
// Licensed Materials - Property of IBM
// 5724-J34 © COPYRIGHT International Business Machines Corp. 2007
package com.ibm.websphere.objectgrid.security.plugins.builtins;

import java.io.File;
import java.io.FileInputStream;
import java.security.KeyStore;
import java.security.KeyStoreException;
import java.security.NoSuchAlgorithmException;
import java.security.PrivateKey;
import java.security.UnrecoverableKeyException;
import java.security.cert.Certificate;
import java.security.cert.CertificateException;
import java.security.cert.CertificateFactory;
import java.security.cert.X509Certificate;
import java.util.Arrays;
import java.util.HashSet;
import java.util.Map;
import java.util.Set;

import javax.security.auth.Subject;
import javax.security.auth.callback.Callback;
import javax.security.auth.callback.CallbackHandler;
import javax.security.auth.callback.NameCallback;
import javax.security.auth.callback.PasswordCallback;
import javax.security.auth.login.LoginException;
import javax.security.auth.spi.LoginModule;
import javax.security.auth.x500.X500Principal;
import javax.security.auth.x500.X500PrivateCredential;

import com.ibm.websphere.objectgrid.ObjectGridRuntimeException;
import com.ibm.ws.objectgrid.Constants;
import com.ibm.ws.objectgrid.ObjectGridManagerImpl;
import com.ibm.ws.objectgrid.util.ObjectGridUtil;

/**
* A KeyStoreLoginModule is keystore authentication login module based on
* JAAS authentication.
* <p>
* A login configuration should provide an option "<code>keyStoreFile</code>" to
* indicate where the keystore file is located. If the <code>keyStoreFile</code>
* value contains a system property in the form, <code>${system.property}</code>,
* it will be expanded to the value of the system property.
* <p>
* If an option "<code>keyStoreFile</code>" is not provided, the default keystore
* file name is <code>"${java.home}${/}.keystore"</code>.

230 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

* <p>
* Here is a Login module configuration example:
* <pre><code>
* KeyStoreLogin {
* com.ibm.websphere.objectgrid.security.plugins.builtins.KeystoreLoginModule required
* keyStoreFile="${user.dir}${/}security${/}.keystore";
* };
* </code></pre>
*
* @ibm-api
* @since WAS XD 6.0.1
*
* @see LoginModule
*/
public class KeyStoreLoginModule implements LoginModule {

private static final String CLASS_NAME = KeyStoreLoginModule.class.getName();

/**
* Key store file property name
*/
public static final String KEY_STORE_FILE_PROPERTY_NAME = "keyStoreFile";

/**
* Key store type. Only JKS is supported
*/
public static final String KEYSTORE_TYPE = "JKS";

/**
* The default key store file name
*/
public static final String DEFAULT_KEY_STORE_FILE = "${java.home}${/}.keystore";

private CallbackHandler handler;

private Subject subject;

private boolean debug = false;

private Set principals = new HashSet();

private Set publicCreds = new HashSet();

private Set privateCreds = new HashSet();

protected KeyStore keyStore;

/**
* Creates a new KeyStoreLoginModule.
*/
public KeyStoreLoginModule() {
}

/**
* Initializes the login module.
*
* @see LoginModule#initialize(Subject, CallbackHandler, Map, Map)
*/
public void initialize(Subject sub, CallbackHandler callbackHandler,

Map mapSharedState, Map mapOptions) {

// initialize any configured options
debug = "true".equalsIgnoreCase((String) mapOptions.get("debug"));

if (sub == null)
throw new IllegalArgumentException("Subject is not specified");

if (callbackHandler == null)
throw new IllegalArgumentException(
"CallbackHander is not specified");

// Get the key store path
String sKeyStorePath = (String) mapOptions

.get(KEY_STORE_FILE_PROPERTY_NAME);

// If there is no key store path, the default one is the .keystore
// file in the java home directory
if (sKeyStorePath == null) {

sKeyStorePath = DEFAULT_KEY_STORE_FILE;
}

// Replace the system enviroment variable
sKeyStorePath = ObjectGridUtil.replaceVar(sKeyStorePath);

File fileKeyStore = new File(sKeyStorePath);

try {
KeyStore store = KeyStore.getInstance("JKS");
store.load(new FileInputStream(fileKeyStore), null);

// Save the key store

Chapter 7. Security API 231

keyStore = store;

if (debug) {
System.out.println("[KeyStoreLoginModule] initialize: Successfully loaded key store");

}
}
catch (Exception e) {

ObjectGridRuntimeException re = new ObjectGridRuntimeException(
"Failed to load keystore: " + fileKeyStore.getAbsolutePath());

re.initCause(e);
if (debug) {

System.out.println("[KeyStoreLoginModule] initialize: Key store loading failed with exception "
+ e.getMessage());

}
}

this.subject = sub;
this.handler = callbackHandler;

}

/**
* Authenticates a user based on the keystore file.
*
* @see LoginModule#login()
*/
public boolean login() throws LoginException {

if (debug) {
System.out.println("[KeyStoreLoginModule] login: entry");

}

String name = null;
char pwd[] = null;

if (keyStore == null || subject == null || handler == null) {
throw new LoginException("Module initialization failed");

}

NameCallback nameCallback = new NameCallback("Username:");
PasswordCallback pwdCallback = new PasswordCallback("Password:", false);

try {
handler.handle(new Callback[] { nameCallback, pwdCallback });

}
catch (Exception e) {

throw new LoginException("Callback failed: " + e);
}

name = nameCallback.getName();
char[] tempPwd = pwdCallback.getPassword();

if (tempPwd == null) {
// treat a NULL password as an empty password
tempPwd = new char[0];

}
pwd = new char[tempPwd.length];
System.arraycopy(tempPwd, 0, pwd, 0, tempPwd.length);

pwdCallback.clearPassword();

if (debug) {
System.out.println("[KeyStoreLoginModule] login: "

+ "user entered user name: " + name);
}

// Validate the user name and password
try {

validate(name, pwd);
}
catch (SecurityException se) {

principals.clear();
publicCreds.clear();
privateCreds.clear();
LoginException le = new LoginException(
"Exception encountered during login");
le.initCause(se);

throw le;
}

if (debug) {
System.out.println("[KeyStoreLoginModule] login: exit");

}
return true;

}

/**
* Indicates the user is accepted.
* <p>
* This method is called only if the user is authenticated by all modules in
* the login configuration file. The principal objects will be added to the

232 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

* stored subject.
*
* @return false if for some reason the principals cannot be added; true
* otherwise
*
* @exception LoginException
* LoginException is thrown if the subject is readonly or if
* any unrecoverable exceptions is encountered.
*
* @see LoginModule#commit()
*/
public boolean commit() throws LoginException {

if (debug) {
System.out.println("[KeyStoreLoginModule] commit: entry");

}

if (principals.isEmpty()) {
throw new IllegalStateException("Commit is called out of sequence");

}

if (subject.isReadOnly()) {
throw new LoginException("Subject is Readonly");

}

subject.getPrincipals().addAll(principals);
subject.getPublicCredentials().addAll(publicCreds);
subject.getPrivateCredentials().addAll(privateCreds);

principals.clear();
publicCreds.clear();
privateCreds.clear();

if (debug) {
System.out.println("[KeyStoreLoginModule] commit: exit");

}
return true;

}

/**
* Indicates the user is not accepted
*
* @see LoginModule#abort()
*/
public boolean abort() throws LoginException {

boolean b = logout();
return b;

}

/**
* Logs the user out. Clear all the maps.
*
* @see LoginModule#logout()
*/
public boolean logout() throws LoginException {

// Clear the instance variables
principals.clear();
publicCreds.clear();
privateCreds.clear();

// clear maps in the subject
if (!subject.isReadOnly()) {

if (subject.getPrincipals() != null) {
subject.getPrincipals().clear();

}

if (subject.getPublicCredentials() != null) {
subject.getPublicCredentials().clear();

}

if (subject.getPrivateCredentials() != null) {
subject.getPrivateCredentials().clear();

}
}
return true;

}

/**
* Validates the user name and password based on the keystore.
*
* @param userName user name
* @param password password
* @throws SecurityException if any exceptions encountered
*/
private void validate(String userName, char password[])

throws SecurityException {

PrivateKey privateKey = null;

// Get the private key from the keystore

Chapter 7. Security API 233

try {
privateKey = (PrivateKey) keyStore.getKey(userName, password);

}
catch (NoSuchAlgorithmException nsae) {

SecurityException se = new SecurityException();
se.initCause(nsae);
throw se;

}
catch (KeyStoreException kse) {

SecurityException se = new SecurityException();
se.initCause(kse);
throw se;

}
catch (UnrecoverableKeyException uke) {

SecurityException se = new SecurityException();
se.initCause(uke);
throw se;

}

if (privateKey == null) {
throw new SecurityException("Invalid name: " + userName);

}

// Check the certificats
Certificate certs[] = null;
try {

certs = keyStore.getCertificateChain(userName);
}
catch (KeyStoreException kse) {

SecurityException se = new SecurityException();
se.initCause(kse);
throw se;

}

if (debug) {
System.out.println(" Print out the certificates:");
for (int i = 0; i < certs.length; i++) {

System.out.println(" certificate " + i);
System.out.println(" " + certs[i]);

}
}

if (certs != null && certs.length > 0) {

// If the first certificate is an X509Certificate
if (certs[0] instanceof X509Certificate) {

try {
// Get the first certificate which represents the user
X509Certificate certX509 = (X509Certificate) certs[0];

// Create a principal
X500Principal principal = new X500Principal(certX509

.getIssuerDN()

.getName());
principals.add(principal);

if (debug) {
System.out.println(" Principal added: " + principal);

}
// Create the certification path object and add it to the
// public credential set
CertificateFactory factory = CertificateFactory

.getInstance("X.509");
java.security.cert.CertPath certPath = factory

.generateCertPath(Arrays.asList(certs));
publicCreds.add(certPath);

// Add the private credential to the private credential set
privateCreds.add(new X500PrivateCredential(certX509,

privateKey, userName));

}
catch (CertificateException ce) {

SecurityException se = new SecurityException();
se.initCause(ce);
throw se;

}
}
else {

// The first certificate is not an X509Certificate
// We just add the certificate to the public credential set
// and the private key to the private credential set.
publicCreds.add(certs[0]);
privateCreds.add(privateKey);

}
}

}
}

Using the LDAP authenticator plug-in

234 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

You are provided with the
com.ibm.websphere.objectgrid.security.plugins.builtins.LDAPAuthenticator default
implementation to handle the user name and password authentication to an LDAP
server. This implementation uses the LDAPLogin login module to log the user into
a Lightweight Directory Access Protocol (LDAP) server.The following snippet
demonstrates how the authenticate method is implemented:
/**
* @see com.ibm.ws.objectgrid.security.plugins.Authenticator#
* authenticate(LDAPLogin)
*/
public Subject authenticate(Credential credential) throws
InvalidCredentialException, ExpiredCredentialException {

UserPasswordCredential cred = (UserPasswordCredential) credential;
LoginContext lc = null;
try {

lc = new LoginContext("LDAPLogin",
new UserPasswordCallbackHandlerImpl(cred.getUserName(),
cred.getPassword().toCharArray()));

lc.login();

Subject subject = lc.getSubject();

return subject;
}
catch (LoginException le) {

throw new InvalidCredentialException(le);
}
catch (IllegalArgumentException ile) {

throw new InvalidCredentialException(ile);
}

}

Also, eXtreme Scale ships a login module
com.ibm.websphere.objectgrid.security.plugins.builtins.LDAPLoginModule for this
purpose. You must provide the following two options in the JAAS login
configuration file.
v providerURL: The LDAP server provider URL
v factoryClass: The LDAP context factory implementation class

The LDAPLoginModule module calls the
com.ibm.websphere.objectgrid.security.plugins.builtins.
LDAPAuthenticationHelper.authenticate method. The following code snippet
shows how you can implement the authenticate method of the
LDAPAuthenticationHelper.
/**
* Authenticate the user to the LDAP directory.
* @param user the user ID, e.g., uid=xxxxxx,c=us,ou=bluepages,o=ibm.com
* @param pwd the password
*
* @throws NamingException
*/
public String[] authenticate(String user, String pwd)
throws NamingException {

Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY, factoryClass);
env.put(Context.PROVIDER_URL, providerURL);
env.put(Context.SECURITY_PRINCIPAL, user);
env.put(Context.SECURITY_CREDENTIALS, pwd);
env.put(Context.SECURITY_AUTHENTICATION, "simple");

InitialContext initialContext = new InitialContext(env);

// Look up for the user
DirContext dirCtx = (DirContext) initialContext.lookup(user);

String uid = null;
int iComma = user.indexOf(",");

Chapter 7. Security API 235

int iEqual = user.indexOf("=");
if (iComma > 0 && iComma > 0) {

uid = user.substring(iEqual + 1, iComma);
}
else {

uid = user;
}

Attributes attributes = dirCtx.getAttributes("");

// Check the UID
String thisUID = (String) (attributes.get(UID).get());

String thisDept = (String) (attributes.get(HR_DEPT).get());

if (thisUID.equals(uid)) {
return new String[] { thisUID, thisDept };

}
else {

return null;
}

}

If authentication succeeds, the ID and password are considered valid. Then the
login module gets the ID information and department information from this
authenticate method. The login module creates two principals: SimpleUserPrincipal
and SimpleDeptPrincipal. You can use the authenticated subject for group
authorization (in this case, the department is a group) and individual
authorization.

The following example shows a login module configuration that is used to log in
to the LDAP server:
LDAPLogin { com.ibm.websphere.objectgrid.security.plugins.builtins.LDAPLoginModule required

providerURL="ldap://directory.acme.com:389/"
factoryClass="com.sun.jndi.ldap.LdapCtxFactory";

};

In the previous configuration, the LDAP server points to the ldap://
directory.acme.com:389/server. Change this setting to your LDAP server. This
login module uses the provided ID and password to connect to the LDAP server.
This implementation is for testing purposes only.

Using the WebSphere Application Server authenticator plug-in

Also, eXtreme Scale provides the
com.ibm.websphere.objectgrid.security.plugins.builtins.WSTokenAuthenticator
built-in implementation to use the WebSphere Application Server security
infrastructure. This built-in implementation can be used when the following
conditions are true.
1. WebSphere Application Server global security is turned on.
2. All eXtreme Scale clients and servers are launched in WebSphere Application

Server JVMs.
3. These application servers are in the same security domain.
4. The eXtreme Scale client is already authenticated in WebSphere Application

Server.

The client can use the com.ibm.websphere.objectgrid.security.plugins.builtins.
WSTokenCredentialGenerator class to generate a credential. The server uses this
Authenticator implementation class to authenticate the credential. If the token is
authenticated successfully, a Subject object returns.

236 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

This scenario takes advantage of the fact that the client has already been
authenticated. Because the application servers that have the servers are in the same
security domain as the application servers that house the clients, the security
tokens can be propagated from the client to the server so that the same user
registry does not need to be authenticated again.

Using the Tivoli® Access Manager authenticator plug-in

Tivoli Access Manager is used widely as a security server. You can also implement
Authenticator using the Tivoli Access Manager's provided login modules.

To authenticate a user for Tivoli Access Manager, apply the the
com.tivoli.mts.PDLoginModule login module, which requires that the calling
application provide the following information:
1. A principal name, specified as either a short name or an X.500 name (DN)
2. A password

The login module authenticates the principal and returns the Tivoli Access
Manager credential. The login module expects the calling application to provide
the following information:
1. The user name, through a javax.security.auth.callback.NameCallback object.
2. The password, through a javax.security.auth.callback.PasswordCallback object.

When the Tivoli Access Manager credential is successfully retrieved, the JAAS
LoginModule creates a Subject and a PDPrincipal. No built-in for Tivoli Access
Manager authentication is provided, because it is just with the PDLoginModule
module. See the IBM Tivoli Access Manager Authorization Java Classes Developer
Reference for more details.

Connecting to WebSphere eXtreme Scale securely

To connect an eXtreme Scale client to a server securely, you can use any connect
method in the ObjectGridManager interface which takes a
ClientSecurityConfiguration object. The following is a brief example.
public ClientClusterContext connect(String catalogServerAddresses,

ClientSecurityConfiguration securityProps,
URL overRideObjectGridXml) throws ConnectException;

This method takes a parameter of the ClientSecurityConfiguration type, which is
an interface representing a client security configuration. You can use
com.ibm.websphere.objectgrid.security.config.ClientSecurityConfigurationFactory
public API to create an instance with default values, or you can create an instance
by passing the WebSphere eXtreme Scale client property file. This file contains the
following properties that are related to authentication. The value marked with a
plus sign (+) is the default.
v securityEnabled (true, false+): This property indicates if security is enabled.

When a client connects to a server, the securityEnabled value on the client and
server side must be both true or both false. For example, if the connected
server security is enabled, the client has to set this property to true to connect to
the server.

v authenticationRetryCount (an integer value, 0+): This property determines how
many retries are attempted for login when a credential is expired. If the value is
0, no retries are attempted. The authentication retry only applies to the case
when the credential is expired. If the credential is not valid, there is no retry.
Your application is responsible for retrying the operation.

Chapter 7. Security API 237

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.itame3.doc_5.1/am51_authJ_devref.pdf
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.itame3.doc_5.1/am51_authJ_devref.pdf

After you create a
com.ibm.websphere.objectgrid.security.config.ClientSecurityConfiguration object, set
the credentialGenerator object on the client using the following method:
/**
* Set the {@link CredentialGenerator} object for this client.
* @param generator the CredentialGenerator object associated with this client
*/
void setCredentialGenerator(CredentialGenerator generator);

You can set the CredentialGenerator object in the WebSphere eXtreme Scale client
property file too, as follows.
v credentialGeneratorClass: The class implementation name for the

CredentialGenerator object. It must have a default constructor.
v credentialGeneratorProps: The properties for the CredentialGenerator class. If the

value is not null, it is set to the constructed CredentialGenerator object using the
setProperties(String) method.

Here is a sample to instantiate a ClientSecurityConfiguration and then use it to
connect to the server.
/**
* Get a secure ClientClusterContext
* @return a secure ClientClusterContext object
*/
protected ClientClusterContext connect() throws ConnectException {
ClientSecurityConfiguration csConfig = ClientSecurityConfigurationFactory
.getClientSecurityConfiguration("/properties/security.ogclient.props");

UserPasswordCredentialGenerator gen= new
UserPasswordCredentialGenerator("manager", "manager1");

csConfig.setCredentialGenerator(gen);

return objectGridManager.connect(csConfig, null);
}

When the connect is called, the WebSphere eXtreme Scale client calls the
CredentialGenerator.getCredential method to get the client credential. This
credential is sent along with the connect request to the server for authentication.

Using a different CredentialGenerator instance per session

In some cases, a WebSphere eXtreme Scale client represents just one client identity,
but in others, it might represent multiple identities. Here is one scenario for the
latter case: An WebSphere eXtreme Scale client is created and shared in a Web
server. All servlets in this Web server use this one WebSphere eXtreme Scale client.
Because every servlet represents a different Web client, use different credentials
when sending requests to WebSphere eXtreme Scale servers.

WebSphere eXtreme Scale provides for changing the credential on the session level.
Every session can uses a different CredentialGenerator object. Therefore, the
previous scenarios can be implemented by letting the servlet get a session with a
different CredentialGenerator object. The following example illustrates the
ObjectGrid.getSession(CredentialGenerator) method in the ObjectGridManager
interface.
/**

* Get a session using a <code>CredentialGenerator</code>.
* <p>
* This method can only be called by the ObjectGrid client in an ObjectGrid
* client server environment. If ObjectGrid is used in a local model, that is,
* within the same JVM with no client or server existing, <code>getSession(Subject)</code>

238 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

* or the <code>SubjectSource</code> plugin should be used to secure the ObjectGrid.
*
* <p>If the <code>initialize()</code> method has not been invoked prior to
* the first <code>getSession</code> invocation, an implicit initialization
* will occur. This ensures that all of the configuration is complete
* before any runtime usage is required.</p>
*
* @param credGen A <code>CredentialGenerator</code> for generating a credential
* for the session returned.
*
* @return An instance of <code>Session</code>
*
* @throws ObjectGridException if an error occurs during processing
* @throws TransactionCallbackException if the <code>TransactionCallback</code>
* throws an exception
* @throws IllegalStateException if this method is called after the
* <code>destroy()</code> method is called.
*
* @see #destroy()
* @see #initialize()
* @see CredentialGenerator
* @see Session
* @since WAS XD 6.0.1

*/
Session getSession(CredentialGenerator credGen) throws
ObjectGridException, TransactionCallbackException;

The following is an example:
ObjectGridManager ogManager = ObjectGridManagerFactory.getObjectGridManager();

CredentialGenerator credGenManager = new UserPasswordCredentialGenerator("manager", "xxxxxx");
CredentialGenerator credGenEmployee = new UserPasswordCredentialGenerator("employee", "xxxxxx");

ObjectGrid og = ogManager.getObjectGrid(ctx, "accounting");

// Get a session with CredentialGenerator;
Session session = og.getSession(credGenManager);

// Get the employee map
ObjectMap om = session.getMap("employee");

// start a transaction.
session.begin();

Object rec1 = map.get("xxxxxx");

session.commit();

// Get another session with a different CredentialGenerator;
session = og.getSession(credGenEmployee);

// Get the employee map
om = session.getMap("employee");

// start a transaction.
session.begin();

Object rec2 = map.get("xxxxx");

session.commit();

If you use the ObjectGird.getSession method to get a Session object, the session
uses the CredentialGenerator object set on the ClientConfigurationSecurity object.
The ObjectGrid.getSession(CredentialGenerator) method overrides the
CredentialGenerator set in the ClientSecurityConfiguration object.

If you can reuse the Session object, a performance gain results. However, calling
the ObjectGrid.getSession(CredentialGenerator) method is not very expensive. The
major overhead is the increased object garbage collection time. Make sure that you
release the references after you are done with the Session objects. Generally, if your
Session object can share the identity, try to reuse the Session object. If not, use the
ObjectGrid.getSession(CredentialGenerator) method.

Client authorization programming
WebSphere eXtreme Scale supports Java Authentication and Authorization Service
(JAAS) authorization out-of-the-box and also supports custom Authorization using
the ObjectGridAuthorization interface.

Chapter 7. Security API 239

The ObjectGridAuthorization plug-in is used to authorize ObjectGrid, ObjectMap
and JavaMap accesses to the Principals represented by a Subject object in a custom
way. A typical implementation of this plug-in is to retrieve the Principals from the
Subject object, and then check whether or not the specified permissions are granted
to the Principals.

A permission passed to the checkPermission(Subject, Permission) method can be
one of the following permissions:
1. MapPermission
2. ObjectGridPermission
3. ServerMapPermission
4. AgentPermission

Refer to ObjectGridAuthorization API Documentation for more details.

MapPermission

The com.ibm.websphere.objectgrid.security.MapPermission public class represents
permissions to the ObjectGrid resources, specifically the methods of ObjectMap or
JavaMap interfaces. WebSphere eXtreme Scale defines the following permission
strings to access the methods of ObjectMap and JavaMap:
1. read: Permission to read the data from the map. The integer constant is defined

as MapPermission.READ.
2. write: Permission to update the data in the map. The integer constant is

defined as MapPermission.WRITE.
3. insert: Permission to insert the data into the map. The integer constant is

defined as MapPermission.INSERT.
4. remove: Permission to remove the data from the map. The integer constant is

defined as MapPermission.REMOVE.
5. invalidate: Permission to invalidate the data from the map. The integer

constant is defined as MapPermission.INVALIDATE.
6. all: All above permissions: read, write, insert, remote, and invalidate. The

integer constant is defined as MapPermission.ALL.

Refer to MapPermission API Documentation for more details.

You can construct a MapPermission object by passing the fully qualified
ObjectGrid map name (in format [ObjectGrid_name].[ObjectMap_name]) and the
permission string or integer value. A permission string can be a comma-delimited
string of the previous permission strings such as read, insert, or it can be all. A
permission integer value can be any previously mentioned permission integer
constants or a mathematical value of several integer permission constants, such as
MapPermission.READ|MapPermission.WRITE.

The authorization occurs when an ObjectMap or JavaMap method is called. The
eXtreme Scale runtime checks different permissions for different methods. If the
required permissions are not granted to the client, an AccessControlException
results.

240 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

Table 12. List of methods and the required MapPermission

Permission ObjectMap/JavaMap

read boolean containsKey(Object)

boolean equals(Object)

Object get(Object)

Object get(Object, Serializable)

List getAll(List)

List getAll(List keyList, Serializable)

List getAllForUpdate(List)

List getAllForUpdate(List, Serializable)

Object getForUpdate(Object)

Object getForUpdate(Object, Serializable)

public Object getNextKey(long)

write Object put(Object key, Object value)

void put(Object, Object, Serializable)

void putAll(Map)

void putAll(Map, Serializable)

void update(Object, Object)

void update(Object, Object, Serializable)

insert public void insert (Object, Object)

void insert(Object, Object, Serializable)

remove Object remove (Object)

void removeAll(Collection)

void clear()

invalidate public void invalidate (Object, boolean)

void invalidateAll(Collection, boolean)

void invalidateUsingKeyword(Serializable)

int setTimeToLive(int)

Authorization is based solely on which method is used, rather than what the
method really does. For example, a put method can insert or update a record
based on whether the record exists. However, the insert or update cases are not
distinguished.

An operation type can be achieved by combinations of other types. For example,
an update can be achieved by a remove and then an insert. Consider these
combinations when designing your authorization policies.

ObjectGridPermission

A com.ibm.websphere.objectgrid.security.ObjectGridPermission represents
permissions to the ObjectGrid:
v Query: permission to create an object query or entity query. The integer constant

is defined as ObjectGridPermission.QUERY.

Chapter 7. Security API 241

v Dynamic map: permission to create a dynamic map based on the map template.
The integer constant is defined as ObjectGridPermission.DYNAMIC_MAP.

Refer to ObjectGridPermission API Documentation for more details.

The following table summarizes the methods and the required
ObjectGridPermission:

Table 13. List of methods and the required ObjectGridPermission
Permission action Methods

query com.ibm.websphere.objectgrid.Session.createObjectQuery(String)

query com.ibm.websphere.objectgrid.em.EntityManager.createQuery(String)

dynamicmap com.ibm.websphere.objectgrid.Session.getMap(String)

ServerMapPermission

An ServerMapPermission represents permissions to an ObjectMap hosted in a
server. The name of the permission is the full name of the ObjectGrid map name. It
has three actions:

1. replicate: permission to replicate a server map to near cache.

2. dynamicIndex: permission for a client to create or remove a dynamic index on a
server

Refer to ServerMapPermission API documentation for more details. The detailed
methods, which require different ServerMapPermission, are listed in the following
table:

Table 14. Permissions to a server-hosted ObjectMap
Permission action Methods

replicate com.ibm.websphere.objectgrid.ClientReplicableMap.enableClientReplication(Mode, int[], ReplicationMapListener)

dynamicIndex com.ibm.websphere.objectgrid.BackingMap.createDynamicIndex(String, boolean, String, DynamicIndexCallback)

dynamicIndex com.ibm.websphere.objectgrid.BackingMap.removeDynamicIndex(String)

AgentPermission

An AgentPermission represents permissions to the datagrid agents. The name of
the permission is the full name of the ObjectGrid map, and the action is a
comma-delimited string of agent implementation class names or package names.

Refer to AgentPermission API Documentation for more information.

The following methods in the class
com.ibm.websphere.objectgrid.datagrid.AgentManager require AgentPermission.
com.ibm.websphere.objectgrid.datagrid.AgentManager#callMapAgent(MapGridAgent, Collection)

com.ibm.websphere.objectgrid.datagrid.AgentManager#callMapAgent(MapGridAgent)

com.ibm.websphere.objectgrid.datagrid.AgentManager#callReduceAgent(ReduceGridAgent, Collection)

com.ibm.websphere.objectgrid.datagrid.AgentManager#callReduceAgent(ReduceGridAgent, Collection)

Authorization mechanisms

WebSphere eXtreme Scale supports two kinds of authorization mechanisms: Java
Authentication and Authorization Service (JAAS) authorization and custom
authorization. These mechanisms apply to all authorizations. JAAS authorization
augments the Java security policies with user-centric access controls. Permissions

242 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

can be granted based not just on what code is running, but also on who is running
it. JAAS authorization is part of the SDK Version 1.4 and later.

Additionally, WebSphere eXtreme Scale also supports custom authorization with
the following plug-in:
v ObjectGridAuthorization: custom way to authorize access to all artifacts.

You can implement your own authorization mechanism if you do not want to use
JAAS authorization. By using a custom authorization mechanism, you can use the
policy database, policy server, or Tivoli Access Manager to manage the
authorizations.

You can configure the authorization mechanism in two ways:

1. XML Configuration: You can use the ObjectGrid XML file to define an ObjectGrid
and set the authorization mechanism to either
AUTHORIZATION_MECHANISM_JAAS or
AUTHORIZATION_MECHANISM_CUSTOM. Here is the secure-objectgrid-
definition.xml file that is used in the enterprise application ObjectGridSample:
<objectGrids>
<objectGrid name="secureClusterObjectGrid" securityEnabled="true"
authorizationMechanism="AUTHORIZATION_MECHANISM_JAAS">
<bean id="TransactionCallback"

classname="com.ibm.websphere.samples.objectgrid.HeapTransactionCallback" />
...
</objectGrids>

2. Programmatic Configuration: If you want to create an ObjectGrid using method
ObjectGrid.setAuthorizationMechanism(int), you can call the following method to
set the authorization mechanism. Calling this method applies only to the local
WebSphere eXtreme Scale programming model when you directly instantiate the
ObjectGrid instance:
/**
* Set the authorization Mechanism. The default is
* com.ibm.websphere.objectgrid.security.SecurityConstants.
* AUTHORIZATION_MECHANISM_JAAS.
* @param authMechanism the map authorization mechanism
*/
void setAuthorizationMechanism(int authMechanism);

JAAS authorization

A javax.security.auth.Subject object represents an authenticated user. A Subject is
comprised of a set of principals, and each Principal represents an identity for that
user. For example, a Subject can have a name principal, for example, Joe Smith,
and a group principal, for example, manager.

Using the JAAS authorization policy, permissions can be granted to specific
Principals. WebSphere eXtreme Scale associates the Subject with the current access
control context. For each call to the ObjectMap or Javamap method, the Java
runtime automatically determines if the policy grants the required permission only
to a specific Principal and if so, the operation is allowed only if the Subject
associated with the access control context contains the designated Principal.

You must be familiar with the policy syntax of the policy file. For detailed
description of JAAS authorization, refer to the JAAS Reference Guide.

Chapter 7. Security API 243

WebSphere eXtreme Scale has a special code base that is used for checking the
JAAS authorization to the ObjectMap and JavaMap method calls. This special code
base is http://www.ibm.com/com/ibm/ws/objectgrid/security/PrivilegedAction.
Use this code base when granting ObjectMap or JavaMap permissions to
principals. This special code was created because the Java archive (JAR) file for
eXtreme Scale is granted with all permissions.

The template of the policy to grant the MapPermission permission is:
grant codeBase "http://www.ibm.com/com/ibm/ws/objectgrid/security/PrivilegedAction"

<Principal field(s)>{
permission com.ibm.websphere.objectgrid.security.MapPermission

"[ObjectGrid_name].[ObjectMap_name]", "action";
....
permission com.ibm.websphere.objectgrid.security.MapPermission

"[ObjectGrid_name].[ObjectMap_name]", "action";
};

A Principal field looks like the following example:

principal Principal_class "principal_name"

In this policy, only insert and read permissions are granted to these four maps to a
certain principal. The other policy file, fullAccessAuth.policy, grants all permissions
to these maps to a principal. Before running the application, change the
principal_name and principal class to appropriate values. The value of the
principal_name depends on the user registry. For example, if local OS is used as
user registry, the machine name is MACH1, the user ID is user1, and the
principal_name is MACH1/user1.

The JAAS authorization policy can be put directly into the Java policy file, or it can
be put in a separate JAAS authorization file and then set by using the

-Djava.security.auth.policy=file:[JAAS_AUTH_POLICY_FILE]

JVM argument or by using the

-Dauth.policy.url.x=file:[JAAS_AUTH_POLICY_FILE]

property in the java.security file.

Custom ObjectGrid authorization

ObjectGridAuthorization plug-in is used to authorize ObjectGrid, ObjectMap and
JavaMap accesses to the Principals represented by a Subject object in a custom way.
A typical implementation of this plug-in is to retrieve the Principals from the
Subject object, and then check whether or not the specified permissions are granted
to the Principals.

A permission passed to the checkPermission(Subject, Permission) method could be
one of the following:

1. MapPermission

2. ObjectGridPermission

3. AgentPermission

244 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

4. ServerMapPermission

Refer to ObjectGridAuthorization API documentation for more details.

The ObjectGridAuthorization plug-in can be configured in the following ways:

1. XML Configuration:You can use the ObjectGrid XML file to define an
ObjectAuthorization plug-in. Here is an example:
<objectGrids>
<objectGrid name="secureClusterObjectGrid" securityEnabled="true"
authorizationMechanism="AUTHORIZATION_MECHANISM_CUSTOM">

...
<bean id="ObjectGridAuthorization"

className="com.acme.ObjectGridAuthorizationImpl" />
</objectGrids>

2. Programmatic Configuration: If you want to create an ObjectGrid using the API
method ObjectGrid.setObjectGridAuthorization(ObjectGridAuthorization), you can
call the following method to set the authorization plug-in. This method only
applies to the local eXtreme Scale programming model when you directly
instantiate the ObjectGrid instance.
/**

* Sets the <code>ObjectGridAuthorization</code> for this ObjectGrid instance.
* <p>
* Passing <code>null</code> to this method removes a previously set
* <code>ObjectGridAuthorization</code> object from an earlier invocation of this method
* and indicates that this <code>ObjectGrid</code> is not associated with a
* <code>ObjectGridAuthorization</code> object.
* <p>
* This method should only be used when ObjectGrid security is enabled. If
* the ObjectGrid security is disabled, the provided <code>ObjectGridAuthorization</code> object
* will not be used.
* <p>
* A <code>ObjectGridAuthorization</code> plugin can be used to authorize
* access to the ObjectGrid and maps. Please refer to <code>ObjectGridAuthorization</code> for more details.
*
* <p>
* As of XD 6.1, the <code>setMapAuthorization</code> is deprecated and
* <code>setObjectGridAuthorization</code> is recommended for use. However,
* if both <code>MapAuthorization</code> plugin and <code>ObjectGridAuthorization</code> plugin
* are used, ObjectGrid will use the provided <code>MapAuthorization</code> to authorize map accesses,
* even though it is deprecated.
* <p>
* Note, to avoid an <code>IllegalStateException</code>, this method must be
* called prior to the <code>initialize()</code> method. Also, keep in mind
* that the <code>getSession</code> methods implicitly call the
* <code>initialize()</code> method if it has yet to be called by the
* application.
*
* @param ogAuthorization the <code>ObjectGridAuthorization</code> plugin
*
* @throws IllegalStateException if this method is called after the
* <code>initialize()</code> method is called.
*
* @see #initialize()
* @see ObjectGridAuthorization
* @since WAS XD 6.1
*/
void setObjectGridAuthorization(ObjectGridAuthorization ogAuthorization);

Implementing ObjectGridAuthorization

The boolean checkPermission(Subject subject, Permission permission) method of
the ObjectGridAuthorization interface is called by theWebSphere eXtreme Scale run
time to check whether the passed-in subject object has the passed-in permission.
The implementation of the ObjectGridAuthorization interface returns true if the
object has the permission, and false if not.

A typical implementation of this plug-in is to retrieve the principals from the
Subject object and check whether the specified permissions are granted to the

Chapter 7. Security API 245

principals by consulting specific policies. These policies are defined by users. For
example, the policies can be defined in a database, a plain file, or a Tivoli Access
Manager policy server.

For example, we can use Tivoli Access Manager policy server to manage the
authorization policy and use its API to authorize the access. For how to use Tivoli
Access Manager Authorization APIs, refer to the IBM Tivoli Access Manager
Authorization Java Classes Developer Reference for more details.

This sample implementation has the following assumptions:
1. Only check authorization for MapPermission. For other permissions, always

return true.
2. The Subject object contains a com.tivoli.mts.PDPrincipal principal.
3. The Tivoli Access Manager policy server has defined the following permissions

for the ObjectMap or JavaMap name object. The object that is defined in the
policy server must have the same name as the ObjectMap or JavaMap name in
the format of [ObjectGrid_name].[ObjectMap_name]. The permission is the first
character of the permission strings that are defined in the MapPermission
permission. For example, the permission "r" that is defined in the policy server
represents the read permission to the ObjectMap map.

The following code snippet demonstrates how to implement the checkPermission
method:
/**
* @see com.ibm.websphere.objectgrid.security.plugins.
* MapAuthorization#checkPermission
* (javax.security.auth.Subject, com.ibm.websphere.objectgrid.security.
* MapPermission)
*/
public boolean checkPermission(final Subject subject,
Permission p) {

// For non-MapPermission, we always authorize.
if (!(p instanceof MapPermission)){

return true;
}

MapPermission permission = (MapPermission) p;

String[] str = permission.getParsedNames();

StringBuffer pdPermissionStr = new StringBuffer(5);
for (int i=0; i<str.length; i++) {

pdPermissionStr.append(str[i].substring(0,1));
}

PDPermission pdPerm = new PDPermission(permission.getName(),
pdPermissionStr.toString());

Set principals = subject.getPrincipals();

Iterator iter= principals.iterator();
while(iter.hasNext()) {

try {
PDPrincipal principal = (PDPrincipal) iter.next();
if (principal.implies(pdPerm)) {

return true;
}

}
catch (ClassCastException cce) {

// Handle exception

246 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

}
}
return false;

}

Data grid authentication
You can use the secure token manager plug-in to enable server-to-server
authentication, which requires you to implement the SecureTokenManager
interface.

The generateToken(Object) method takes an object protect, and then generates a
token that cannot be understood by others. The verifyTokens(byte[]) method does
the reverse process: it converts the token back to the original object.

A simple SecureTokenManager implementation uses a simple encoding algorithm,
such as a XOR algorithm, to encode the object in serialized form and then use
corresponding decoding algorithm to decode the token. This implementation is not
secure and is easy to break.

WebSphere eXtreme Scale default implementation

WebSphere eXtreme Scale provides an immediately available implementation for
this interface. This default implementation uses a key pair to sign and verify the
signature, and uses a secret key to encrypt the content. Every server has a JCKES
type keystore to store the key pair, a private key and public key, and a secret key.
The keystore has to be the JCKES type to store secret keys. These keys are used to
encrypt and sign or verify the secret string on the sending end. Also, the token is
associated with an expiration time. On the receiving end, the data is verified,
decrypted, and compared to the receiver secret string. Secure Sockets Layer (SSL)
communication protocols are not required between a pair of servers for
authentication because the private keys and public keys serve the same purpose.
However, if server communication is not encrypted, the data can be stolen by
looking at the communication. Because the token expires soon, the replay attack
threat is minimized. This possibility is significantly decreased if all servers are
deployed behind a firewall.

The disadvantage of this approach is that the WebSphere eXtreme Scale
administrators have to generate keys and transport them to all servers, which can
cause security breach during transportation.

Local security
WebSphere eXtreme Scale provides several security endpoints to allow you to
integrate custom mechanisms. In the local programming model, the main security
function is authorization, and has no authentication support . You must
authenticate outside of WebSphere Application Server. However, there are provided
plug-ins to obtain and validate Subject objects.

Enabling security

The following list provides the two ways in which local security is enabled:
v XML Configuration You can use the ObjectGrid XML file to define an

ObjectGrid and enable the security for that ObjectGrid. The following file is the

Chapter 7. Security API 247

secure-objectgrid-definition.xml file that is used in the ObjectGridSample
enterprise application sample. In this XML file, security is enabled by setting the
securityEnabled attribute to true.
<objectGrids>

<objectGrid name="secureClusterObjectGrid" securityEnabled="true"
authorizationMechanism="AUTHORIZATION_MECHANISM_JASS">

...
</objectGrids>

v Programming If you want to create an ObjectGrid using the API method
ObjectGrid.setSecurityEnabled(), call the following method on the ObjectGrid
interface to enable security.
/**
* Enable the ObjectGrid security
*/
void setSecurityEnabled();

Authentication

In the local programming model, eXtreme Scale does not provide any
authentication mechanism, but relies on the environment, either application servers
or applications, for authentication. When eXtreme Scale is used in WebSphere
Application Server or WebSphere Extended Deployment, applications can use the
WebSphere Application Server security authentication mechanism. When eXtreme
Scale is running in a Java 2 Platform, Standard Edition (J2SE) environment, the
application has to manage authentications with Java Authentication and
Authorization Service (JAAS) authentication or other authentication mechanisms.
For more information about using JAAS authentication, see the JAAS reference
guide. The contract between an application and an ObjectGrid instance is the
javax.security.auth.Subject object. After the client is authenticated by the application
server or the application, the application can retrieve the authenticated
javax.security.auth.Subject object and use this Subject object to get a session from
the ObjectGrid instance by calling the ObjectGrid.getSession(Subject) method. This
Subject object is used to authorize accesses to the map data. This contract is called
a subject passing mechanism. The following example illustrates the
ObjectGrid.getSession(Subject) API.
/**
* This API allows the cache to use a specific subject rather than the one
* configured on the ObjectGrid to get a session.
* @param subject
* @return An instance of Session
* @throws ObjectGridException
* @throws TransactionCallbackException
* @throws InvalidSubjectException the subject passed in is not valid based
* on the SubjectValidation mechanism.
*/
public Session getSession(Subject subject)
throws ObjectGridException, TransactionCallbackException, InvalidSubjectException;

The ObjectGrid.getSession() method in the ObjectGrid interface can also be used to
get a Session object:
/**
* This method returns a Session object that can be used by a single thread at a time.
* You cannot share this Session object between threads without placing a
* critical section around it. While the core framework allows the object to move
* between threads, the TransactionCallback and Loader might prevent this usage,
* especially in J2EE environments. When security is enabled, this method uses the
* SubjectSource to get a Subject object.
*
* If the initialize method has not been invoked prior to the first
* getSession invocation, then an implicit initialization occurs. This
* initialization ensures that all of the configuration is complete before

248 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

http://java.sun.com/j2se/1.4.2/docs/guide/security/jaas/JAASRefGuide.html
http://java.sun.com/j2se/1.4.2/docs/guide/security/jaas/JAASRefGuide.html

* any runtime usage is required.
*
* @see #initialize()
* @return An instance of Session
* @throws ObjectGridException
* @throws TransactionCallbackException
* @throws IllegalStateException if this method is called after the
* destroy() method is called.
*/
public Session getSession()
throws ObjectGridException, TransactionCallbackException;

As the API documentation specifies, when security is enabled, this method uses
the SubjectSource plug-in to get a Subject object. The SubjectSource plug-in is one
of the security plug-ins defined in eXtreme Scale to support propagating Subject
objects. See Security-related plug-ins for more information. The getSession(Subject)
method can be called on the local ObjectGrid instance only. If you call the
getSession(Subject) method on a client side in a distributed eXtreme Scale
configuration, an IllegalStateException results.

Security plug-ins

WebSphere eXtreme Scale provides two security plug-ins that are related to the
subject passing mechanism: the SubjectSource and SubjectValidation plug-ins.

SubjectSource plug-in

The SubjectSource plug-in, represented by the
com.ibm.websphere.objectgrid.security.plugins.SubjectSource interface, is a plug-in
that is used to get a Subject object from an eXtreme Scale running environment.
This environment can be an application using the ObjectGrid or an application
server that hosts the application. Consider the SubjectSource plug-in an alternative
to the subject passing mechanism. Using the subject passing mechanism, the
application retrieves the Subject object and uses it to get the ObjectGrid session
object. With the SubjectSource plug-in, the eXtreme Scale runtime retrieves the
Subject object and uses it to get the session object. The subject passing mechanism
gives the control of Subject objects to applications, while the SubjectSource plug-in
mechanism frees applications from retrieving the Subject object. You can use the
SubjectSource plug-in to get a Subject object that represents an eXtreme Scale client
that is used for authorization. When the ObjectGrid.getSession method is called,
the Subject getSubject throws an ObjectGridSecurityException if security is enabled.
WebSphere eXtreme Scale provides a default implementation of this plug-in:
com.ibm.websphere.objectgrid.security.plugins.builtins.WSSubjectSourceImpl. This
implementation can be used to retrieve a caller subject or a RunAs subject from the
thread when an application is running in WebSphere Application Server. You can
configure this class in your ObjectGrid descriptor XML file as the SubjectSource
implementation class when using eXtreme Scale in WebSphere Application Server.
The following code snippet shows the main flow of the
WSSubjectSourceImpl.getSubject method.
Subject s = null;
try {

if (finalType == RUN_AS_SUBJECT) {
// get the RunAs subject
s = com.ibm.websphere.security.auth.WSSubject.getRunAsSubject();

}
else if (finalType == CALLER_SUBJECT) {

// get the callersubject
s = com.ibm.websphere.security.auth.WSSubject.getCallerSubject();

}
}
catch (WSSecurityException wse) {

Chapter 7. Security API 249

throw new ObjectGridSecurityException(wse);
}

return s;

For other details, refer to the API documentation for the SubjectSource plug-in and
the WSSubjectSourceImpl implementation.

SubjectValidation plug-in

The SubjectValidation plug-in, which is represented by the
com.ibm.websphere.objectgrid.security.plugins.SubjectValidation interface, is
another security plug-in. The SubjectValidation plug-in can be used to validate that
a javax.security.auth.Subject, either passed to the ObjectGrid or retrieved by the
SubjectSource plug-in, is a valid Subject that has not been tampered with.

The SubjectValidation.validateSubject(Subject) method in the SubjectValidation
interface takes a Subject object and returns a Subject object. Whether a Subject
object is considered valid and which Subject object is returned are all up to your
implementations. If the Subject object is not valid, an InvalidSubjectException
results.

You can use this plug-in if you do not trust the Subject object that is passed to this
method. This case is rare considering that you trust the application developers who
develop the code to retrieve the Subject object.

An implementation of this plug-in needs support from the Subject object creator
because only the creator knows if the Subject object has been tampered with.
However, some subject creator might not know if the Subject has been tampered
with. In this case, this plug-in is not useful.

WebSphere eXtreme Scale provides a default implementation of SubjectValidation:
com.ibm.websphere.objectgrid.security.plugins.builtins.WSSubjectValidationImpl.
You can use this implementation to validate the WebSphere Application
Server-authenticated subject. You can configure this class as the SubjectValidation
implementation class when using eXtreme Scale in WebSphere Application Server.
The WSSubjectValidationImpl implementation considers a Subject object valid only
if the credential token that is associated with this Subject has not been tampered
with. You can change other parts of the Subject object. The
WSSubjectValidationImpl implementation asks WebSphere Application Server for
the original Subject corresponding to the credential token and returns the original
Subject object as the validated Subject object. Therefore, the changes made to the
Subject contents other than the credential token have no effects. The following code
snippet shows the basic flow of the
WSSubjectValidationImpl.validateSubject(Subject).
// Create a LoginContext with scheme WSLogin and
// pass a Callback handler.
LoginContext lc = new LoginContext("WSLogin",
new WSCredTokenCallbackHandlerImpl(subject));

// When this method is called, the callback handler methods
// will be called to log the user in.
lc.login();

// Get the subject from the LoginContext
return lc.getSubject();

250 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

In the previous code snippet, a credential token callback handler object,
WSCredTokenCallbackHandlerImpl, is created with the Subject object to validate.
Then a LoginContext object is created with the login scheme WSLogin. When the
lc.login method is called, WebSphere Application Server security retrieves the
credential token from the Subject object and then returns the correspondent Subject
as the validated Subject object.

For other details, refer to the Java APIs of SubjectValidation and
WSSubjectValidationImpl implementation.

Plug-in configuration

You can configure the SubjectValidation plug-in and SubjectSource plug-in in two
ways:
v XML ConfigurationYou can use the ObjectGrid XML file to define an ObjectGrid

and set these two plug-ins. Here is an example, in which the
WSSubjectSourceImpl class is configured as the SubjectSource plug-in and the
WSSubjectValidation class is configured as the SubjectValidation plug-in.
<objectGrids>
<objectGrid name="secureClusterObjectGrid" securityEnabled="true"
authorizationMechanism="AUTHORIZATION_MECHANISM_JAAS">

<bean id="SubjectSource"
className="com.ibm.websphere.objectgrid.security.plugins.builtins.
WSSubjectSourceImpl" />

<bean id="SubjectValidation"
className="com.ibm.websphere.objectgrid.security.plugins.builtins.
WSSubjectValidationImpl" />

<bean id="TransactionCallback"
className="com.ibm.websphere.samples.objectgrid.
HeapTransactionCallback" />
...
</objectGrids>

v Programming If you want to create an ObjectGrid through APIs, you can call
the following methods to set the SubjectSource or SubjectValidation plug-ins.
**
* Set the SubjectValidation plug-in for this ObjectGrid instance. A
* SubjectValidation plug-in can be used to validate the Subject object
* passed in as a valid Subject. Refer to {@link SubjectValidation}
* for more details.
* @param subjectValidation the SubjectValidation plug-in
*/
void setSubjectValidation(SubjectValidation subjectValidation);

/**
* Set the SubjectSource plug-in. A SubjectSource plug-in can be used
* to get a Subject object from the environment to represent the
* ObjectGrid client.
*
* @param source the SubjectSource plug-in
*/
void setSubjectSource(SubjectSource source);

Write your own JAAS authentication code

You can write you own Java Authentication and Authorization Service (JAAS)
authentication code to handle the authentication. You need to write your own login
modules and then configure the login modules for your authentication module.

Chapter 7. Security API 251

The login module receives information about a user and authenticates the user.
This information can be anything that can identify the user. For example, the
information can be a user ID and password, client certificate, and so on. After
receiving the information, the login module verifies that the information represents
a valid subject and then creates a Subject object. Currently, several implementations
of login modules are available to the public.

After a login module is written, configure this login module for the run time to
use. You must configure a JAAS login module. This login module contains the
login module and its authentication scheme. For example:
FileLogin
{

com.acme.auth.FileLoginModule required
};

The authentication scheme is FileLogin and the login module is
com.acme.auth.FileLoginModule. The required token indicates that the
FileLoginModule module must validate this login or the entire scheme fails.

Setting the JAAS login module configuration file can be done in one of the
following ways:
v Set the JAAS login module configuration file in the login.config.url property in

the java.security file, for example:
login.config.url.1=file:${java.home}/lib/security/file.login

v Set the JAAS login module configuration file from the command line by using
the -Djava.security.auth.login.config Java virtual machine (JVM) arguments, for
example, -Djava.security.auth.login.config ==$JAVA_HOME/lib/security/
file.login

If your code is running in WebSphere Application Server, you must configure the
JAAS login in the administrative console and store this login configuration in the
application server configuration. See Login configuration for Java Authentication
and Authorization Service for details.

252 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

Chapter 8. Performance considerations

To improve performance for your in-memory data grid or database processing
space, you can investigate several considerations such as tuning your Java virtual
machine settings and using the best practices for product features such as locking,
serialization, and query performance.

JVM tuning
You must take into account several specific aspects of Java virtual machine (JVM)
tuning for WebSphere eXtreme Scale best performance.

The recommendation is 1 to 2Gb heaps with a JVM per 4 cores. The heap sizes
depend on the nature of the objects being stored in the servers, discussed later in
this document.

Heap size and garbage collection recommendations

The optimum heap size number depends on three factors:
1. Number of live objects in the heap.
2. Complexity of live objects in the heap.
3. Number of available cores for the JVM.

For example, an application storing 10K byte arrays can run a much larger heap
than an application using complex graphs of POJOs.

All modern JVMs today use parallel garbage collection algorithms, which means
that using more cores can reduce pauses in garbage collection. So, 8-core boxes will
be collected faster than a box with 4 cores.

Real memory usage versus heap specification

A 1Gb heap JVM uses approximately 1.3Gb of real memory. In our lab, we have
been unable to run ten 1Gb JVMs on a box with 16Gb of RAM. Once the JVM
heaps filled up to 800 plus MB, the box started paging.

Garbage collection

For IBM JVMs, use the avgoptpause collector for high update rate scenarios (100%
of transactions modify entries). The gencon collector works much better than the
avgoptpause collector for scenarios where data is updated relatively infrequently
(10% of the time or less). Experiment with both collectors to see what works best
in your scenario. If you see a performance problem, then run with verbose garbage
collection turned on to check the percentage of the time that is being spent
collecting garbage. Scenarios have occurred where 80% of the time is spent in
garbage collection until tuning fixed the problem.

JVM performance

WebSphere eXtreme Scale can run on different versions of Java 2 Platform,
Standard Edition (J2SE). ObjectGrid Version 6.1 supports J2SE Version 1.4.2 and

© Copyright IBM Corp. 2009, 2011 253

later. For improved developer productivity and performance, use J2SE 5 or later to
take advantage of annotations and improved garbage collection. ObjectGrid works
on 32-bit or 64-bit JVMs.

ObjectGrid Version 6.0.2 clients can attach to an ObjectGrid Version 6.1 data grid.
Use ObjectGrid Version 6.1 clients for J2SE Version 1.4.2 or better clients. The only
reason to use an ObjectGrid Version 6.0.2 client is for J2SE Version 1.3 support.

WebSphere eXtreme Scale is tested with a subset of the available virtual machines,
however, the supported list is not exclusive. You can run WebSphere eXtreme Scale
on any Version 1.4.2 or above, but if a problem on the JVM is identified, you must
contact the JVM vendor for support. If possible, use the JVM from the WebSphere
runtime on any platform that WebSphere Application Server supports.

Java Platform, Standard Edition 6 is the best JVM. Java 2 Platform, Standard
Edition, v 1.4 performs poorly especially for scenarios where the gencon collector
makes a difference. Java Platform Standard Edition 5 performs well, but Java
Platform, Standard Edition 6 performs better.

orb.properties tuning

The recommendation is to use the following orb.properties file for production. In
our lab, we have used this file on data grids of up to 1500 JVMs. The
orb.properties file is in the lib folder of the JRE being used.
IBM JDK properties for ORB
org.omg.CORBA.ORBClass=com.ibm.CORBA.iiop.ORB
org.omg.CORBA.ORBSingletonClass=com.ibm.rmi.corba.ORBSingleton

WS Interceptors
org.omg.PortableInterceptor.ORBInitializerClass.com.ibm.ws.objectgrid.corba.ObjectGridInitializer

WS ORB & Plugins properties
com.ibm.CORBA.ForceTunnel=never
com.ibm.CORBA.RequestTimeout=10
com.ibm.CORBA.ConnectTimeout=10

Needed when lots of JVMs connect to the catalog at the same time
com.ibm.CORBA.ServerSocketQueueDepth=2048

Clients and the catalog server can have sockets open to all JVMs
com.ibm.CORBA.MaxOpenConnections=1016

Thread Pool for handling incoming requests, 200 threads here
com.ibm.CORBA.ThreadPool.IsGrowable=false
com.ibm.CORBA.ThreadPool.MaximumSize=200
com.ibm.CORBA.ThreadPool.MinimumSize=200
com.ibm.CORBA.ThreadPool.InactivityTimeout=180000

No splitting up large requests/responses in to smaller chunks
com.ibm.CORBA.FragmentSize=0

Thread count

The thread count depends on a few factors. A limit exists for how many threads a
single shard can manage. With more shards for each JVM, more threads and more
concurrency can exist. Each additional shard provides more concurrent paths to the
data. Each shard is as concurrent as possible but even so, a limit exists.

CopyMode best practices
WebSphere eXtreme Scale makes a copy of the value based on the six available
CopyMode settings. Determine which setting works best for your deployment
requirements.

254 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

You can use the BackingMap API setCopyMode(CopyMode, valueInterfaceClass)
method to set the copy mode to one of the following final static fields that are
defined in the com.ibm.websphere.objectgrid.CopyMode class.

When an application uses the ObjectMap interface to obtain a reference to a map
entry, use that reference only within the WebSphere eXtreme Scale transaction that
obtained the reference. Using the reference in a different transaction can lead to
errors. For example, if you use the pessimistic locking strategy for the BackingMap,
a get or getForUpdate method call acquires an S (shared) or U (update) lock,
depending on the transaction. The get method returns the reference to the value
and the lock that is obtained is released when the transaction completes. The
transaction must call the get or getForUpdate method to lock the map entry in a
different transaction. Each transaction must obtain its own reference to the value
by calling the get or getForUpdate method instead of reusing the same value
reference in multiple transactions.

CopyMode for entity maps

When using a map associated with an EntityManager API entity, the map always
returns the entity Tuple objects directly without making a copy unless you are
using COPY_TO_BYTES copy mode. It is important that the CopyMode is updated
or the Tuple is copied appropriately when making changes.

COPY_ON_READ_AND_COMMIT

The COPY_ON_READ_AND_COMMIT mode is the default mode. The
valueInterfaceClass argument is ignored when this mode is used. This mode
ensures that an application does not contain a reference to the value object that is
in the BackingMap. Instead, the application is always working with a copy of the
value that is in the BackingMap. The COPY_ON_READ_AND_COMMIT mode
ensures that the application can never inadvertently corrupt the data that is cached
in the BackingMap. When an application transaction calls an ObjectMap.get
method for a given key, and it is the first access of the ObjectMap entry for that
key, a copy of the value is returned. When the transaction is committed, any
changes that are committed by the application are copied to the BackingMap to
ensure that the application does not have a reference to the committed value in the
BackingMap.

COPY_ON_READ

The COPY_ON_READ mode improves performance over the
COPY_ON_READ_AND_COMMIT mode by eliminating the copy that occurs
when a transaction is committed. The valueInterfaceClass argument is ignored
when this mode is used. To preserve the integrity of the BackingMap data, the
application ensures that every reference that it has for an entry is destroyed after
the transaction is committed. With this mode, the ObjectMap.get method returns a
copy of the value instead of a reference to the value to ensure that changes that are
made by the application to the value does not affect the BackingMap value until
the transaction is committed. However, when the transaction does commit, a copy
of changes is not made. Instead, the reference to the copy that was returned by the
ObjectMap.get method is stored in the BackingMap. The application destroys all
map entry references after the transaction is committed. If application does not
destroy the map entry references, the application might cause the data cached in
BackingMap to become corrupted. If an application is using this mode and is
having problems, switch to COPY_ON_READ_AND_COMMIT mode to see if the
problem still exists. If the problem goes away, then the application is failing to

Chapter 8. Performance considerations 255

destroy all of its references after the transaction has committed.

COPY_ON_WRITE

The COPY_ON_WRITE mode improves performance over the
COPY_ON_READ_AND_COMMIT mode by eliminating the copy that occurs
when the ObjectMap.get method is called for the first time by a transaction for a
given key. The ObjectMap.get method returns a proxy to the value instead of a
direct reference to the value object. The proxy ensures that a copy of the value is
not made unless the application calls a set method on the value interface that is
specified by the valueInterfaceClass argument. The proxy provides a copy on write
implementation. When a transaction commits, the BackingMap examines the proxy
to determine if any copy was made as a result of a set method being called. If a
copy was made, then the reference to that copy is stored in the BackingMap. The
big advantage of this mode is that a value is never copied on a read or at a
commit when the transaction never calls a set method to change the value.

The COPY_ON_READ_AND_COMMIT and COPY_ON_READ modes both make a
deep copy when a value is retrieved from the ObjectMap. If an application only
updates some of the values that are retrieved in a transaction then this mode is not
optimal. The COPY_ON_WRITE mode supports this behavior in an efficient
manner but requires that the application uses a simple pattern. The value objects
are required to support an interface. The application must use the methods on this
interface when it is interacting with the value in an eXtreme Scale Session. If this is
the case, then eXtreme Scale creates proxies for the values that are returned to the
application. The proxy has a reference to be real value. If the application performs
read operations only, the read operations always run against the real copy. If the
application modifies an attribute on the object, the proxy makes a copy of the real
object and then makes the modification on the copy. The proxy then uses the copy
from that point on. Using the copy allows the copy operation to be avoided
completely for objects that are only read by the application. All modify operations
must start with the set prefix. Enterprise JavaBeans normally are coded to use this
style of method naming for methods that modify the objects attributes. This
convention must be followed. Any objects that are modified are copied at the time
that they are modified by the application. This read and write scenario is the most
efficient scenario supported by eXtreme Scale. To configure a map to use
COPY_ON_WRITE mode, use the following example. In this example, the
application stores Person objects that are keyed using the name in the Map. The
person object is represented in the following code snippet.
class Person {

String name;
int age;
public Person() {
}
public void setName(String n) {

name = n;
}
public String getName() {

return name;
}
public void setAge(int a) {

age = a;
}
public int getAge() {

return age;
}

}

256 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

The application uses the IPerson interface only when it interacts with values that
are retrieved from a ObjectMap. Modify the object to use an interface as in the
following example.
interface IPerson
{

void setName(String n);
String getName();
void setAge(int a);
int getAge();

}
// Modify Person to implement IPerson interface
class Person implements IPerson {

...
}

The application then needs to configure the BackingMap to use COPY_ON_WRITE
mode, like in the following example:
ObjectGrid dg = ...;
BackingMap bm = dg.defineMap("PERSON");
// use COPY_ON_WRITE for this Map with
// IPerson as the valueProxyInfo Class
bm.setCopyMode(CopyMode.COPY_ON_WRITE,IPerson.class);
// The application should then use the following
// pattern when using the PERSON Map.
Session sess = ...;
ObjectMap person = sess.getMap("PERSON");
...
sess.begin();
// the application casts the returned value to IPerson and not Person
IPerson p = (IPerson)person.get("Billy");
p.setAge(p.getAge()+1);
...
// make a new Person and add to Map
Person p1 = new Person();
p1.setName("Bobby");
p1.setAge(12);
person.insert(p1.getName(), p1);
sess.commit();
// the following snippet WON’T WORK. Will result in ClassCastException
sess.begin();
// the mistake here is that Person is used rather than
// IPerson
Person a = (Person)person.get("Bobby");
sess.commit();

The first section shows the application retrieving a value that was named Billy in
the map. The application casts the returned value to the IPerson object, not the
Person object because the proxy that is returned implements two interfaces:
v The interface specified in the BackingMap.setCopyMode method call
v The com.ibm.websphere.objectgrid.ValueProxyInfo interface

You can cast the proxy to two types. The last part of the preceding code snippet
demonstrates what is not allowed in COPY_ON_WRITE mode. The application
retrieves the Bobby record and tries to cast the record to a Person object. This
action fails with a class cast exception because the proxy that is returned is not a
Person object. The returned proxy implements the IPerson object and
ValueProxyInfo.

ValueProxyInfo interface and partial update support: This interface allows an
application to retrieve either the committed read-only value referenced by the
proxy or the set of attributes that have been modified during this transaction.

Chapter 8. Performance considerations 257

public interface ValueProxyInfo {
List /**/ ibmGetDirtyAttributes();
Object ibmGetRealValue();

}

The ibmGetRealValue method returns a read only copy of the object. The
application must not modify this value. The ibmGetDirtyAttributes method returns
a list of strings representing the attributes that have been modified by the
application during this transaction. The main use case for ibmGetDirtyAttributes is
in a Java database connectivity (JDBC) or CMP based loader. Only the attributes
that are named in the list need be updated on either the SQL statement or object
mapped to the table, which leads to more efficient SQL generated by the Loader.
When a copy on write transaction is committed and if a loader is plugged in, the
the loader can cast the values of the modified objects to the ValueProxyInfo
interface to obtain this information.

Handling the equals method when using COPY_ON_WRITE or proxies: For
example, the following code constructs a Person object and then inserts it to a an
ObjectMap. Next, it retrieves the same object using the ObjectMap.get method. The
value is cast to the interface. If the value is cast to the Person interface, a
ClassCastException exception results because the returned value is a proxy that
implements the IPerson interface and is not a Person object. The equality check
fails when using the == operation because they are not the same object.
session.begin();
// new the Person object
Person p = new Person(...);
personMap.insert(p.getName, p);
// retrieve it again, remember to use the interface for the cast
IPerson p2 = personMap.get(p.getName());
if(p2 == p) {

// they are the same
} else {

// they are not
}

Another consideration is when you must override the equals method. As
illustrated in the following snippet of code, the equals method must verify that the
argument is an object that implements IPerson interface and cast the argument to
be a IPerson. Because the argument might be a proxy that implements the IPerson
interface, you must use the getAge and getName methods when comparing
instance variables for equality.
{

if (obj == null) return false;
if (obj instanceof IPerson) {

IPerson x = (IPerson) obj;
return (age.equals(x.getAge()) && name.equals(x.getName()))

}
return false;

}

ObjectQuery and HashIndex configuration requirements: When using
COPY_ON_WRITE with ObjectQuery or a HashIndex plug-in, it's important to
configure the ObjectQuery schema and HashIndex plug-in to access the objects
using property methods, which is the default. If configured to use field access, the
query engine and index will attempt to access the fields in the proxy object, which
will always return null or 0 since the object instance will be a proxy.

258 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

NO_COPY

The NO_COPY mode allows an application to ensure that it never modifies a value
object that is obtained using an ObjectMap.get method in exchange for
performance improvements. The valueInterfaceClass argument is ignored when
this mode is used. If this mode is used, no copy of the value is ever made. If the
application modifies values, then the data in the BackingMap is corrupted. The
NO_COPY mode is primarily useful for read-only maps where data is never
modified by the application. If the application is using this mode and it is having
problems, then switch to the COPY_ON_READ_AND_COMMIT mode to see if the
problem still exists. If the problem goes away, then the application is modifying the
value returned by ObjectMap.get method, either during transaction or after
transaction has committed. All maps associated with EntityManager API entities
automatically use this mode regardless of what is specified in the eXtreme Scale
configuration.

All maps associated with EntityManager API entities automatically use this mode
regardless of what is specified in the eXtreme Scale configuration.

COPY_TO_BYTES

You can store objects in a serialized format instead of POJO format. By using the
COPY_TO_BYTES setting, you can reduce the memory footprint that a large graph
of Objects can consume. See “Byte array maps” on page 260 for additional
information.

Incorrect use of CopyMode

Errors occur when an application attempts to improve performance by using the
COPY_ON_READ, COPY_ON_WRITE, or NO_COPY copy mode, as described
above. The intermittent errors do not occur when you change the copy mode to
the COPY_ON_READ_AND_COMMIT mode.

Problem

The problem might be due to corrupted data in the ObjectGrid map, which is a
result of the application violating the programming contract of the copy mode that
is being used. Data corruption can cause unpredictable errors to occur
intermittently or in an unexplained or unexpected fashion.

Solution

The application must comply with the programming contract that is stated for the
copy mode being used. For the COPY_ON_READ and COPY_ON_WRITE copy
modes, the application uses a reference to a value object outside of the transaction
scope from which the value reference was obtained. To use these modes, the
application must delete the reference to the value object after the transaction
completes, and obtain a new reference to the value object in each transaction that
accesses the value object. For the NO_COPY copy mode, the application must
never change the value object. In this case, either write the application so that it
does not change the value object, or set the application to use a different copy
mode.

Chapter 8. Performance considerations 259

Byte array maps
You can store the key-value pairs in your maps in a byte array instead of POJO
form, which reduces the memory footprint that a large graph of objects can
consume.

Advantages

The amount of memory that is consumed increases with the number of objects in a
graph of objects. By reducing a complicated graph of objects to a byte array, only
one object is maintained in the heap instead of several objects. With this reduction
of the number of objects in the heap, the Java run time has fewer objects to search
for during garbage collection.

The default copy mechanism used by WebSphere eXtreme Scale is serialization,
which is expensive. For instance, if using the default copy mode of
COPY_ON_READ_AND_COMMIT, a copy is made both at read time and at get time.
Instead of making a copy at read time, with byte arrays, the value is inflated from
bytes, and instead of making a copy at commit time, the value is serialized to
bytes. Using byte arrays results in equivalent data consistency to the default setting
with a reduction of memory used.

When using byte arrays, note that having an optimized serialization mechanism is
critical to seeing a reduction of memory consumption. For more information, see
“Serialization performance” on page 268.

Configuring byte array maps

You can enable byte array maps with the ObjectGrid XML file by modifying the
CopyMode attribute that is used by a map to the setting COPY_TO_BYTES, shown
in the following example:
<backingMap name="byteMap" copyMode="COPY_TO_BYTES" />

See the topic on the ObjectGrid descriptor XML file in the Administration Guide for
more information.

Considerations

You must consider whether or not to use byte array maps in a given scenario.
Although you can reduce your memory use, processor use can increase when you
use byte arrays.

The following list outlines several factors that should be considered before
choosing to use the byte array map function.

Object type

Comparatively, memory reduction may not be possible when using byte array
maps for some object types. Consequently, several types of objects exist for which
you should not use byte array maps. If you are using any of the Java primitive
wrappers as values, or a POJO that does not contain references to other objects
(only storing primitive fields), the number of Java Objects is already as low as
possible–there is only one. Since the amount of memory used by the object is
already optimized, using a byte array map for these types of objects is not

260 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

recommended. Byte array maps are more suitable to object types that contain other
objects or collections of objects where the total number of POJO objects is greater
than one.

For example, if you have a Customer object that had a business Address and a
home Address, as well as a collection of Orders, the number of objects in the heap
and the number of bytes used by those objects can be reduced by using byte array
maps.

Local access

When using other copy modes, applications can be optimized when copies are
made if objects are Cloneable with the default ObjectTransformer or when a
custom ObjectTransformer is provided with an optimized copyValue method.
Compared to the other copy modes, copying on reads, writes, or commit
operations will have additional cost when accessing objects locally. For example, if
you have a near cache in a distributed topology or are directly accessing a local or
server ObjectGrid instance, the access and commit time will increase when using
byte array maps due to the cost of serialization. You will see a similar cost in a
distributed topology if you use data grid agents or you access the server primary
when using the ObjectGridEventGroup.ShardEvents plug-in.

Plug-in interactions

With byte array maps, objects are not inflated when communicating from a client
to a server unless the server needs the POJO form. Plug-ins that interact with the
map value will experience a reduction in performance due to the requirement to
inflate the value.

Any plug-in that uses LogElement.getCacheEntry or LogElement.getCurrentValue
will see this additional cost. If you want to get the key, you can use
LogElement.getKey, which avoids the additional overhead associated with the
LogElement.getCacheEntry().getKey method. The following sections discuss
plug-ins in light of the usage of byte arrays.

Indexes and queries

When objects are stored in POJO format, the cost of doing indexing and querying
is minimal because the object does not need to be inflated. When using a byte
array map you will have the additional cost of inflating the object. In general if
your application uses indexes or queries, it is not recommended to use byte array
maps unless you only run queries on key attributes.

Optimistic locking

When using the optimistic locking strategy, you will have the additional cost
during updates and invalidate operations. This comes from having to inflate the
value on the server to get the version value to do optimistic collision checking. If
you are just using optimistic locking to guarantee fetch operations and do not need
optimistic collision checking, you can use the
com.ibm.websphere.objectgrid.plugins.builtins.NoVersioningOptimisticCallback to
disable version checking.

Loader

Chapter 8. Performance considerations 261

With a Loader, you will also have the cost in the eXtreme Scale run time from
inflating and reserializing the value when it is used by the Loader. You can still
use byte array maps with Loaders, but consider the cost of making changes to the
value in such a scenario. For example, you can use the byte array feature in the
context of a read mostly cache. In this case, the benefit of having less objects in the
heap and less memory used will outweigh the cost incurred from using byte arrays
on insert and update operations.

ObjectGridEventListener

When using the transactionEnd method in the ObjectGridEventListener plug-in,
you will have an additional cost on the server side for remote requests when
accessing a LogElement's CacheEntry or current value. If the implementation of the
method does not access these fields, then you will not have the additional cost.

Plug-in evictor performance best practices
If you use plug-in evictors, they are not active until you create them and associate
them with a backing map. The following best practices will increase performance
for least frequently used (LFU) and least recently used (LRU) evictors.

Least frequently used (LFU) evictor

The concept of a LFU evictor is to remove entries from the map that are used
infrequently. The entries of the map are spread over a set amount of binary heaps.
As the usage of a particular cache entry grows, it becomes ordered higher in the
heap. When the evictor attempts a set of evictions it removes only the cache entries
that are located lower than a specific point on the binary heap. As a result, the
least frequently used entries are evicted.

Least recently used (LRU) evictor

The LRU Evictor follows the same concepts of the LFU Evictor with a few
differences. The main difference is that the LRU uses a first in, first out queue
(FIFO) instead of a set of binary heaps. Every time a cache entry is accessed, it
moves to the head of the queue. Consequently, the front of the queue contains the
most recently used map entries and the end becomes the least recently used map
entries. For example, the A cache entry is used 50 times, and the B cache entry is
used only once right after the A cache entry. In this situation, the B cache entry is
at the front of the queue because it was used most recently, and the A cache entry
is at the end of the queue. The LRU evictor evicts the cache entries that are at the
tail of the queue, which are the least recently used map entries.

LFU and LRU properties and best practices to improve
performance

Number of heaps

When using the LFU evictor, all of the cache entries for a particular map are
ordered over the number of heaps that you specify, improving performance
drastically and preventing all of the evictions from synchronizing on one binary
heap that contains all of the ordering for the map. More heaps also speeds up the
time that is required for reordering the heaps because each heap has fewer entries.
Set the number of heaps to 10% of the number of entries in your BaseMap.

262 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

Number of queues

When using the LRU evictor, all of the cache entries for a particular map are
ordered over the number of LRU queues that you specify, improving performance
drastically and preventing all of the evictions from synchronizing on one queue
that contains all of the ordering for the map. Set the number of queues to 10% of
the number of entries in your BaseMap.

MaxSize property

When an LFU or LRU evictor begins evicting entries, it uses the MaxSize evictor
property to determine how many binary heaps or LRU queue elements to evict.
For example, assume that you set the number of heaps or queues to have about 10
map entries in each map queue. If your MaxSize property is set to 7, the evictor
evicts 3 entries from each heap or queue object to bring the size of each heap or
queue back down to 7. The evictor only evicts map entries from a heap or queue
when that heap or queue has more than the MaxSize property value of elements in
it. Set the MaxSize to 70% of your heap or queue size. For this example, the value
is set to 7. You can get an approximate size of each heap or queue by dividing the
number of BaseMap entries by the number of heaps or queues that are used.

SleepTime property

An evictor does not constantly remove entries from your map. Instead it is idle for
a set amount of time, only checking the map every n number of seconds, where n
refers to the SleepTime property. This property also positively affects performance:
running an eviction sweep too often lowers performance because of the resources
that are needed for processing them. However, not using the evictor often can
result in a map that has entries that are not needed. A map full of entries that are
not needed can negatively affect both the memory requirements and processing
resources that are required for your map. Setting the eviction sweep interval to
fifteen seconds is a good practice for most maps. If the map is written to
frequently and is used at a high transaction rate, consider setting the value to a
lower time. If the map is accessed infrequently, you can set the time to a higher
value.

Example

The following example defines a map, creates a new LFU evictor, sets the evictor
properties, and sets the map to use the evictor:
//Use ObjectGridManager to create/get the ObjectGrid. Refer to
// the ObjectGridManger section
ObjectGrid objGrid = ObjectGridManager.create............
BackingMap bMap = objGrid.defineMap("SomeMap");

//Set properties assuming 50,000 map entries
LFUEvictor someEvictor = new LFUEvictor();
someEvictor.setNumberOfHeaps(5000);
someEvictor.setMaxSize(7);
someEvictor.setSleepTime(15);
bMap.setEvictor(someEvictor);

Using the LRU evictor is very similar to using an LFU evictor. An example follows:
ObjectGrid objGrid = new ObjectGrid;
BackingMap bMap = objGrid.defineMap("SomeMap");

//Set properties assuming 50,000 map entries
LRUEvictor someEvictor = new LRUEvictor();

Chapter 8. Performance considerations 263

someEvictor.setNumberOfLRUQueues(5000);
someEvictor.setMaxSize(7);
someEvictor.setSleepTime(15);
bMap.setEvictor(someEvictor);

Notice that only two lines are different from the LFUEvictor example.

Locking performance best practices
Locking strategies and transaction isolation settings affect the performance of your
applications.

Retrieve a cached instance

See the information about map entry locking in the Administration Guide for more
information.

Pessimistic locking strategy

Use the pessimistic locking strategy for read and write map operations where keys
often collide. The pessimistic locking strategy has the greatest impact on
performance.

Read committed and read uncommitted transaction isolation

When you are using pessimistic locking strategy, set the transaction isolation level
using the Session.setTransactionIsolation method. For read committed or read
uncommitted isolation, use the Session.TRANSACTION_READ_COMMITTED or
Session.TRANSACTION_READ_UNCOMMITTED arguments depending on the
isolation. To reset the transaction isolation level to the default pessimistic locking
behavior, use the Session.setTransactionIsolation method with the
Session.REPEATABLE_READ argument.

Read committed isolation reduces the duration of shared locks, which can improve
concurrency and reduce the chance for deadlocks. This isolation level should be
used when a transaction does not need assurances that read values remain
unchanged for the duration of the transaction.

Use an uncommitted read when the transaction does not need to see the
committed data.

Optimistic locking strategy

Optimistic locking is the default configuration. This strategy improves both
performance and scalability compared to the pessimistic strategy. Use this strategy
when your applications can tolerate some optimistic update failures, while still
performing better than the pessimistic strategy. This strategy is excellent for read
operations and infrequent update applications.

OptimisticCallback plug-in

The optimistic locking strategy makes a copy of the cache entries and compares
them as needed. This operation can be expensive because copying the entry might
involve cloning or serialization. To implement the fastest possible performance,
implement the custom plug-in for non-entity maps.

264 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

See for more information. See the information about the OptimisticCallback plug-in
in the Product Overview for more information.

Use version fields for entities

When you are using optimistic locking with entities, use the @Version annotation
or the equivalent attribute in the Entity metadata descriptor file. The version
annotation gives the ObjectGrid a very efficient way of tracking the version of an
object. If the entity does not have a version field and optimistic locking is used for
the entity, then the entire entity must be copied and compared.

None locking strategy

Use the none locking strategy for applications that are read only. The none locking
strategy does not obtain any locks or use a lock manager. Therefore, this strategy
offers the most concurrency, performance and scalability.

Map entry locks with query and indexes
This topic describes how eXtreme Scale Query APIs and the MapRangeIndex
indexing plug-in interact with locks and some best practices to increase
concurrency and decrease deadlocks when using the pessimistic locking strategy
for maps.

Overview

The ObjectGrid Query API allows SELECT queries over ObjectMap cache objects
and entities. When a query is run, the query engine uses a MapRangeIndex when
possible to find matching keys that match values in the query's WHERE clause or
to bridge relationships. When an index isn't available, the query engine will scan
each entry in one or more maps to find the appropriate entries. Both the query
engine and index plugins will acquire locks to verify consistent data, depending on
the locking strategy, transaction isolation level, and transaction state.

Locking with the HashIndex plug-in

The eXtreme Scale HashIndex plug-in allows finding keys based on a single
attribute stored in the cache entry value. The index stores the indexed value in a
separate data structure from the cache map. The index validates the keys against
map entries before returning to the user to try to achieve an accurate result set.
When the pessimistic lock strategy is used and the index is used against a local
ObjectMap instance (versus a client/server ObjectMap), the index will acquire
locks for each matching entry. When using optimistic locking or a remote
ObjectMap, the locks are always immediately released.

The type of lock that is acquired depends upon the forUpdate argument passed to
the ObjectMap.getIndex method. The forUpdate argument specifies the type of lock
that the index should acquire. If false, a shareable (S) lock is acquired and if true,
an upgradeable (U) lock is acquired.

If the lock type is shareable, the transaction isolation setting for the session is
applied and affects the duration of the lock. See the transaction isolation topic for
details on how transaction isolation is used to add concurrency to applications.

Chapter 8. Performance considerations 265

Shared locks with query

The eXtreme Scale query engine acquires S locks when needed to introspect the
cache entries to discover if they satisfy the query's filter criteria. When using
repeatable read transaction isolation with pessimistic locking, the S locks are only
retained for the elements that are included in the query result and are released for
any entries that are not included in the result. If using a lower transaction isolation
level or optimistic locking, the S locks are not retained.

Shared locks with client to server query

When using the eXtreme Scale query from a client, the query typically runs on the
server unless all of the maps or entities referenced in the query are local to the
client (for example: a client-replicated map or a query result entity). All queries
that run in a read/write transaction will retain S locks as described in the previous
section. If the transaction is not a read/write transaction, then a session is not
retained on the server and the S locks are released.

A read/write transaction is only routed to a primary partition and a session is
maintained on the server for the client session. A transaction can be promoted to
read/write under the following conditions:
1. Any map configured to use pessimistic locking is accessed using the ObjectMap

get and getAll API methods or the EntityManager.find methods.
2. The transaction is flushed, causing updates to be sent to the server.
3. Any map configured to use optimistic locking is accessed using the

ObjectMap.getForUpdate or EntityManager.findForUpdate method.

Upgradeable locks with query

Shareable locks are useful when concurrency and consistency is important. It
guarantees that an entry's value does not change for the life of the transaction. No
other transaction can change the value while any other S locks are held, and only
one other transaction can establish an intent to update the entry. See the
Pessimistic Locking Mode topic for details on the S, U and X locking modes.

Upgradeable locks are used to identify the intent to update a cache entry when
using the pessimistic lock strategy. It allows synchronization between transactions
that want to modify a cache entry. Transactions can still view the entry using an S
lock, but other transactions are prevented from acquiring a U lock or an X lock. In
many scenarios, acquiring a U lock without first acquiring an S lock is necessary to
avoid deadlocks. See the Pessimistic Locking Mode topic for common deadlock
examples.

The ObjectQuery and EntityManager Query interfaces provide the setForUpdate
method to identify the intended use for the query result. Specifically, the query
engine acquires U locks instead of S locks for each map entry involved in the
query result:
ObjectMap orderMap = session.getMap("Order");
ObjectQuery q = session.createQuery("SELECT o FROM Order o WHERE o.orderDate=?1");
q.setParameter(1, "20080101");
q.setForUpdate(true);
session.begin();
// Run the query. Each order has U lock
Iterator result = q.getResultIterator();
// For each order, update the status.
while(result.hasNext()) {

Order o = (Order) result.next();

266 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

o.status = "shipped";
orderMap.update(o.getId(), o);

}
// When committed, the
session.commit();

Query q = em.createQuery("SELECT o FROM Order o WHERE o.orderDate=?1");
q.setParameter(1, "20080101");
q.setForUpdate(true);
emTran.begin();
// Run the query. Each order has U lock
Iterator result = q.getResultIterator();
// For each order, update the status.
while(result.hasNext()) {

Order o = (Order) result.next();
o.status = "shipped";

}
tmTran.commit();

When the setForUpdate attribute is enabled, the transaction is automatically
converted to a read/write transaction and the locks are held on the server as
expected. If the query cannot use any indexes, then the map must be scanned
which will result in temporary U locks for map entries that do not satisfy the
query result, and hold U locks for entries that are included in the result.

ObjectTransformer interface best practices
The ObjectTransformer interface uses callbacks to the application to provide
custom implementations of common and expensive operations such as object
serialization and deep copies on objects.

Overview

For details about the ObjectTransformer interface, see “ObjectTransformer plug-in”
on page 197. From a performance viewpoint, and from the CopyMode method
information that is in the CopyMode method best practices topic, eXtreme Scale
clearly copies the values for all cases except when NO_COPY mode is used. The
default copying mechanism that is employed in eXtreme Scale is serialization,
which is known as an expensive operation. The ObjectTransformer interface is used
in this situation. The ObjectTransformer interface uses callbacks to the application
to provide a custom implementation of common and expensive operations, such as
object serialization and deep copies on objects.

An application can provide an implementation of the ObjectTransformer interface
to a map, and eXtreme Scale then delegates to the methods on this object and
relies on the application to provide an optimized version of each method in the
interface. The ObjectTransformer interface follows:
public interface ObjectTransformer {

void serializeKey(Object key, ObjectOutputStream stream) throws IOException;
void serializeValue(Object value, ObjectOutputStream stream) throws IOException;
Object inflateKey(ObjectInputStream stream) throws IOException, ClassNotFoundException;
Object inflateValue(ObjectInputStream stream) throws IOException, ClassNotFoundException;
Object copyValue(Object value);
Object copyKey(Object key);

}

You can associate an ObjectTransformer interface with a BackingMap by using the
following example code:
ObjectGrid g = ...;
BackingMap bm = g.defineMap("PERSON");
MyObjectTransformer ot = new MyObjectTransformer();
bm.setObjectTransformer(ot);

Chapter 8. Performance considerations 267

Tune object serialization and inflation

Object serialization is typically the most important performance consideration with
eXtreme Scale, which uses the default serializable mechanism if an
ObjectTransformer plug-in is not supplied by the application. An application can
provide implementations of either the Serializable readObject and writeObject, or it
can have the objects implement the Externalizable interface, which is
approximately ten times faster. If the objects in the map cannot be modified, then
an application can associate an ObjectTransformer interface with the ObjectMap.
The serialize and inflate methods are provided to allow the application to provide
custom code to optimize these operations, given their large performance impact on
the system. The serialize method serializes the object to the provided stream. The
inflate method provides the input stream and expects the application to create the
object, inflate it using data in the stream and return the object. Implementations of
the serialize and inflate methods must mirror each other.

Tune deep copy operations

After an application receives an object from an ObjectMap, eXtreme Scale performs
a deep copy on the object value to ensure that the copy in the BaseMap map
maintains data integrity. The application can then modify the object value safely.
When the transaction commits, the copy of the object value in the BaseMap map is
updated to the new modified value and the application stops using the value from
that point on. You could have copied the object again at the commit phase to make
a private copy. However, in this case the performance cost of this action was
traded off against requiring the application programmer not to use the value after
the transaction commits. The default ObjectTransformer attempts to use either a
clone or a serialize and inflate pair to generate a copy. The serialize and inflate pair
is the worst case performance scenario. If profiling reveals that serialize and inflate
is a problem for your application, write an appropriate clone method to create a
deep copy. If you cannot alter the class, then create a custom ObjectTransformer
plug-in and implement more efficient copyValue and copyKey methods.

Serialization performance
WebSphere eXtreme Scale uses multiple Java processes to hold data. These
processes serialize the data: That is, they convert the data (which is in the form of
Java object instances) to bytes and back to objects again as needed to move the
data between client and server processes. Marshalling the data is the most
expensive operation and must be addressed by the application developer when
designing the schema, configuring the data grid and interacting with the
data-access APIs.

The default Java serialization and copy routines are relatively slow and can
consume 60 to 70 percent of the processor in a typical setup. The following
sections are choices for improving the performance of the serialization.

Write an ObjectTransformer for each BackingMap

An ObjectTransformer can be associated with a BackingMap. Your application can
have a class that implements the ObjectTransformer interface and provides
implementations for the following operations:
v Copying values
v Serializing and inflating keys to and from streams
v Serializing and inflating values to and from streams

268 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

The application does not need to copy keys because keys are considered
immutable.

For more information, see “ObjectTransformer plug-in” on page 197 and
“ObjectTransformer interface best practices” on page 267.

Note: The ObjectTransformer is only invoked when the ObjectGrid knows about
the data that is being transformed. For example, when DataGrid API agents are
used, the agents themselves as well as the agent instance data or data returned
from the agent must be optimized using custom serialization techniques. The
ObjectTransformer is not invoked for DataGrid API agents.

Using entities

When using the EntityManager API with entities, the ObjectGrid does not store the
entity objects directly into the BackingMaps. The EntityManager API converts the
entity object to Tuple objects. See For more information, see the topic on using a
loader with entity maps and tuples in the Programming Guide. Entity maps are
automatically associated with a highly optimized ObjectTransformer. Whenever the
ObjectMap API or EntityManager API is used to interact with entity maps, the
entity ObjectTransformer is invoked.

Custom serialization

There are some cases when objects must be modified to use custom serialization,
such as implementing the java.io.Externalizable interface or by implementing the
writeObject and readObject methods for classes implementing the
java.io.Serializable interface. Custom serialization techniques should be employed
when the objects are serialized using mechanisms other than the ObjectGrid API or
EntityManager API methods.

For example, when objects or entities are stored as instance data in a DataGrid API
agent or the agent returns objects or entities, those objects are not transformed
using an ObjectTransformer. The agent, will however, automatically use the
ObjectTransformer when using EntityMixininterface. See DataGrid agents and
entity based Maps for further details.

Byte arrays

When using the ObjectMap or DataGrid APIs, the key and value objects are
serialized whenever the client interacts with the data grid and when the objects are
replicated. To avoid the overhead of serialization, use byte arrays instead of Java
objects. Byte arrays are much cheaper to store in memory since the JDK has less
objects to search for during garbage collection and they are can be inflated only
when needed. Byte arrays should only be used if you do not need to access the
objects using queries or indexes. Since the data is stored as bytes, the data can only
be accessed through its key.

WebSphere eXtreme Scale can automatically store data as byte arrays using the
CopyMode.COPY_TO_BYTES map configuration option, or it can be handled
manually by the client. This option will store the data efficiently in memory and
can also automatically inflate the objects within the byte array for use by query
and indexes on demand.

Chapter 8. Performance considerations 269

270 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

Chapter 9. Troubleshooting

To troubleshoot the configuration of your eXtreme Scale in-memory data grid, you
can use logs and trace, messages, and release notes.
Related concepts

Troubleshooting XML configuration

Logs and trace
You can use logs and trace to monitor and troubleshoot your environment. Logs
are in different locations depending on your configuration. You might need to
provide trace for a server when you work with IBM support.

Logs with WebSphere Application Server

See the WebSphere Application Server Information Center for more information.

Logs with WebSphere eXtreme Scale in a stand-alone
environment

With stand-alone catalog and container servers, you set the location of logs and
any trace specification. The catalog server logs are in the location where you ran
the start server command.

Setting the log location for container servers

By default, the logs for a container are in the directory where the server command
was run. If you start the servers in the <eXtremeScale_home>/bin directory, the logs
and trace files are in the logs/<server_name> directories in the bin directory. To
specify an alternate location of a container server logs, create a properties file, such
as a server.properties file, with the following contents:
workingDirectory=<directory>
traceSpec=
systemStreamToFileEnabled=true

The workingDirectory property is the root directory for the logs and optional trace
file. WebSphere eXtreme Scale creates a directory with the name of the container
server with a SystemOut.log file, a SystemErr.log file, and a trace file if trace was
enabled with the traceSpec option. To use a properties file during container
startup, use the -serverProps option and provide the server properties file
location.

Common information messages to look for in the SystemOut.log file are start
confirmation messages. For more information about a specific message, see
“Messages” on page 277.

Trace with WebSphere Application Server

See the WebSphere Application Server Information Center for more information.

© Copyright IBM Corp. 2009, 2011 271

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/ttrb_trcover.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/ttrb_trcover.html

Trace on a stand-alone catalog service

You can set trace on a catalog service by using the -traceSpec and -traceFile
parameters during catalog service startup. For example:
startOgServer.sh catalogServer -traceSpec
ObjectGridPlacement=all=enabled -traceFile
/home/user1/logs/trace.log

If you start the catalog service in the <eXtremeScale_home>/bin directory, the logs
and trace files will be in a logs/<catalog_service_name> directory in the bin
directory. See the information about starting the catalog service process in a
stand-alone environment in the Administration Guide.

Trace on a stand-alone container server

You can enable trace on a container server in two ways. You can create a server
properties file as explained in the logs section, or you can enable trace by using the
command line on startup. To enable container trace with a server properties file,
update the traceSpec property with the required trace specification. To enable
container trace using start parameters, use the -traceSpecand -traceFile
parameters. For example:
startOgServer.sh c0 -objectGridFile ../xml/myObjectGrid.xml
-deploymentPolicyFile ../xml/myDepPolicy.xml -catalogServiceEndpoints
server1.rchland.ibm.com:2809 -traceSpec
ObjectGridPlacement=all=enabled -traceFile /home/user1/logs/trace.log

If you start the server in the <eXtremeScale_home>/bin directory, the logs and trace
files are in the logs/<server_name> directories in the bin directory

See

Trace on a stand-alone client

You can start trace collection on a stand-alone client by adding system properties
to the startup script for the client application. In the following example, trace
settings are specified for the com.ibm.samples.MyClientProgram application:
java -DtraceSettingsFile=MyTraceSettings.properties
-Djava.util.logging.manager=com.ibm.ws.bootstrap.WsLogManager
-Djava.util.logging.configureByServer=true com.ibm.samples.MyClientProgram

See WebSphere Application Server: Enabling trace on client and stand-alone
applications for more information.

Trace with the ObjectGridManager interface

Another option is to set trace during run time on an ObjectGridManager interface.
Setting trace on an ObjectGridManager interface can be used to get trace on an
eXtreme Scale client while it connects to an eXtreme Scale and commits
transactions. To set trace on an ObjectGridManager interface, supply a trace
specification and a trace log.
ObjectGridManager manager = ObjectGridManagerFactory.getObjectGridManager();
...
manager.setTraceEnabled(true);
manager.setTraceFileName("logs/myClient.log");
manager.setTraceSpecification("ObjectGridReplication=all=enabled");

272 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=pix&product=was-nd-dist&topic=ttrb_entrstandal
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=pix&product=was-nd-dist&topic=ttrb_entrstandal

Trace with the xsadmin utility

To enable trace with the xsadmin utility, use the setTraceSpec option. Use the
xsadmin utility to enable trace on a stand-alone environment during run time
instead of during startup. You can enable trace with xsadmin on container servers
only:
xsadmin.bat -setTraceSpec "ObjectGridReplication=all=enabled"

You can also disable trace by setting the trace specification to *=all=disabled.

See the information about the xsAdmin utility in the Administration Guide for more
information.

ffdc directory and files

FFDC files are for IBM support to aid in debug. These files might be requested by
IBM support if a problem occurs.

These files are in a directory labeled, ffdc, and contain files that resemble the
following:
server2_exception.log
server2_20802080_07.03.05_10.52.18_0.txt

Trace options
You can enable trace to provide information about your environment to IBM
support.

About trace

WebSphere eXtreme Scale trace is divided into several different components.
Similarly toWebSphere Application Server trace, you can specify the level of trace
to use. Common levels of trace include: all, debug, entryExit, and event.

An example trace string follows:
ObjectGridComponent=level=enabled

You can concatenate trace strings. Use the * (asterisk) symbol to specify a wildcard
value, such as ObjectGrid*=all=enabled. If you need to provide a trace to IBM
support, a specific trace string is requested. For example, if a problem with
replication occurs, the ObjectGridReplication=debug=enabled trace string might be
requested.

Trace specification

ObjectGrid
General core cache engine.

ObjectGridCatalogServer
General catalog service.

ObjectGridChannel
Static deployment topology communications.

ObjectgridCORBA
Dynamic deployment topology communications.

ObjectGridDataGrid
The AgentManager API.

Chapter 9. Troubleshooting 273

ObjectGridDynaCache
The WebSphere eXtreme Scale dynamic cache provider.

ObjectGridEntityManager
The EntityManager API. Use with the Projector option.

ObjectGridEvictors
ObjectGrid built-in evictors.

ObjectGridJPA
Java Persistence API (JPA) loaders.

ObjectGridJPACache
JPA cache plug-ins.

ObjectGridLocking
ObjectGrid cache entry lock manager.

ObjectGridMBean
Management beans.

ObjectGridPlacement
Catalog server shard placement service.

ObjectGridQuery
ObjectGrid query.

ObjectGridReplication
Replication service.

ObjectGridRouting
Client/server routing details.

ObjectGridSecurity
Security trace.

ObjectGridStats
ObjectGrid statistics.

ObjectGridStreamQuery
The Stream Query API.

ObjectGridWriteBehind
ObjectGrid write behind.

Projector
The engine within the EntityManager API.

QueryEngine
The query engine for the Object Query API and EntityManager Query API.

QueryEnginePlan
Query plan diagnostics.

Troubleshooting loaders
Use this information to troubleshoot issues with your database loaders.

Procedure
v Problem: When you are using an OpenJPA loader with DB2 in WebSphere

Application Server, a closed cursor exception occurs.
The following exception is from DB2 in the
org.apache.openjpa.persistence.PersistenceException log file:
[jcc][t4][10120][10898][3.57.82] Invalid operation: result set is closed.

274 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

Solution: By default, the application server configures the resultSetHoldability
custom property with a value of 2 (CLOSE_CURSORS_AT_COMMIT). This
property causes DB2 to close its resultSet/cursor at transaction boundaries. To
remove the exception, change the value of the custom property to 1
(HOLD_CURSORS_OVER_COMMIT). Set the resultSetHoldability custom
property on the following path in the WebSphere Application Server cell:
Resources > JDBC provider > DB2 Universal JDBC Driver Provider >
DataSources > data_source_name > Custom properties > New.

v Problem: DB2 displays an exception: The current transaction has been rolled
back because of a deadlock or timeout. Reason code "2".. SQLCODE=-911,
SQLSTATE=40001, DRIVER=3.50.152

This exception occurs because of a lock contention problem when you are
running with OpenJPA with DB2 in WebSphere Application Server. The default
isolation level for WebSphere Application Server is Repeatable Read (RR), which
obtains long-lived locks with DB2.
Solution: Set the isolation level to Read Committed to reduce the lock
contention. Set the webSphereDefaultIsolationLevel data source custom property
to set the isolation level to 2(TRANSACTION_READ_COMMITTED) on the
following path in the WebSphere Application Server cell: Resources > JDBC
provider > JDBC_provider > Data sources > data_source_name > Custom
properties > New. For more information about the
webSphereDefaultIsolationLevel custom property and transaction isolation
levels, see Requirements for setting data access isolation levels.

v Problem: When you are using the preload function of the JPALoader or
JPAEntityLoader, the following CWOBJ1511 message does not display for the
partition in a container server: CWOBJ1511I:
GRID_NAME:MAPSET_NAME:PARTITION_ID (primary) is open for business.
Instead, a TargetNotAvailableException exception occurs in the container server,
which activates the partition that is specified by the preloadPartition property.
Solution: Set the preloadMode attribute to true if you use a JPALoader or
JPAEntityLoader to preload data into the map. If the preloadPartition property
of the JPALoader and JPAEntityLoader is set to a value between 0 and
total_number_of_partitions - 1, then the JPALoader and JPAEntityLoader try
to preload the data from backend database into the map. The following snippet
of code illustrates how the preloadMode attribute is set to enable asynchronous
preload:
BackingMap bm = og.defineMap("map1");
bm.setPreloadMode(true);

You can also set the preloadMode attribute by using an XML file as illustrated in
the following example:
<backingMap name="map1" preloadMode="true" pluginCollectionRef="map1"
lockStrategy="OPTIMISTIC" />

Chapter 9. Troubleshooting 275

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=compass&product=was-nd-mp&topic=isolevel

Related concepts

“Writing a loader” on page 159
You can write your own loader plug-in implementation in your applications, which
must follow the common WebSphere eXtreme Scale plug-in conventions.
“Using a Loader” on page 157
With an eXtreme Scale Loader plug-in, an ObjectGrid map can behave as a
memory cache for data that is typically kept in a persistent store on either the
same system or some other system. Typically, a database or file system is used as
the persistent store. A remote Java virtual machine (JVM) can also be used as the
source of data, allowing hub-based caches to be built using ObjectGrid. A loader
has the logic for reading and writing data to and from a persistent store.
“Client-based JPA preload utility overview” on page 180
The client-based Java Persistence API (JPA) preload utility loads data into eXtreme
Scale backing maps using a client connection to the ObjectGrid.
Loaders overview
Related reference

“Client-based JPA preload utility programming” on page 182
The client-based Java Persistence API (JPA) preload utility loads data into eXtreme
Scale backing maps using a client connection to the ObjectGrid. You can implement
preloading and reloading of data in your application.
“JPA loader programming considerations” on page 164
A Java Persistence API (JPA) Loader is a loader plug-in implementation that uses
JPA to interact with the database. Use the following considerations when you
develop an application that uses a JPA loader.

Troubleshooting client connectivity problems
There are several common problems specific to clients and client connectivity that
you can solve as described in the following sections.

Procedure

Problem: If you are using the EntityManager API or byte array maps with the
COPY_TO_BYTES copy mode, client data access methods result in various
serialization-related exceptions or a NullPointerException.
v The following error occurs when you are using the COPY_TO_BYTES copy

mode:
java.lang.NullPointerException

at com.ibm.ws.objectgrid.map.BaseMap$BaseMapObjectTransformer2.inflateObject(BaseMap.java:5278)
at com.ibm.ws.objectgrid.map.BaseMap$BaseMapObjectTransformer.inflateValue(BaseMap.java:5155)

v The following error occurs when you are using the EntityManager API:
java.lang.NullPointerException

at com.ibm.ws.objectgrid.em.GraphTraversalHelper.fluffFetchMD(GraphTraversalHelper.java:323)
at com.ibm.ws.objectgrid.em.GraphTraversalHelper.fluffFetchMD(GraphTraversalHelper.java:343)
at com.ibm.ws.objectgrid.em.GraphTraversalHelper.getObjectGraph(GraphTraversalHelper.java:102)
at com.ibm.ws.objectgrid.ServerCoreEventProcessor.getFromMap(ServerCoreEventProcessor.java:709)
at com.ibm.ws.objectgrid.ServerCoreEventProcessor.processGetRequest(ServerCoreEventProcessor.java:323)

Cause: The EntityManager API and COPY_TO_BYTES copy mode use a metadata
repository that is embedded in the data grid. When clients connect, the data grid
stores the repository identifiers in the client and caches the identifiers for the
duration of the client connection. If you restart the data grid, you lose all metadata
and the regenerated identifiers do not match the cached identifiers on the client.
Solution: If you are using the EntityManager API or the COPY_TO_BYTES copy
mode, disconnect and reconnect all of the clients if the ObjectGrid is stopped and
restarted. Disconnecting and reconnecting the clients refreshes the metadata

276 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

identifier cache. You can disconnect clients by using the
ObjectGridManager.disconnect() method or the ObjectGrid.destroy() method.

Messages
When you encounter a message in a log or other parts of the product interface,
you can look up the message by its component prefix to find out more
information.

Finding messages

When you encounter a message in a log, copy the message number with its letter
prefix and number and search in the information center (for example, CWOBJ1526I).
When you search for the message, you can find an additional explanation of the
message and possible actions you can take to resolve the problem.

See the information center for an index of product messages.

Release notes
Links are provided to the product support Web site, to product documentation,
and to last minute updates, limitations, and known problems for the product.
v “Accessing last-minute updates, limitations, and known problems”
v “Accessing system and software requirements”
v “Accessing product documentation”
v “Accessing the product support Web site”
v “Contacting IBM Software Support”

Accessing last-minute updates, limitations, and known problems

The release notes are available on the product support site as technotes. To see a
list of all the technotes for WebSphere eXtreme Scale, go to the Support Web page.
v To see a list of the release notes for Version 7.0, go to the Support Web page.
v To see a list of the release notes for Version 6.1, go to the Release notes wiki

page.

Accessing system and software requirements

The hardware and software requirements are documented on the following pages:
v Detailed system requirements

Accessing product documentation

For the entire information set, go to the Library page.

Accessing the product support Web site

To search for the latest technotes, downloads, fixes, and other support-related
information, go to the Support page.

Contacting IBM Software Support

If you encounter a problem with the product, first try the following actions:
v Follow the steps described in the product documentation

Chapter 9. Troubleshooting 277

http://www-306.ibm.com/software/webservers/appserv/extend/support/
http://www-01.ibm.com/support/search.wss?rs=3023&tc=SSPPLQ&q=v7xsrnotes
 http://www.ibm.com/developerworks/wikis/x/-YAF
 http://www.ibm.com/developerworks/wikis/x/-YAF
http://www.ibm.com/support/docview.wss?rs=3023&uid=swg27016103
http://www-01.ibm.com/software/webservers/appserv/extremescale/library/index.html
http://www-306.ibm.com/software/webservers/appserv/extend/support/

v Look for related documentation in the online help
v Look up error messages in the message reference

If you cannot resolve your problem by any of the preceding methods, contact IBM
Technical Support.

278 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

Chapter 10. Glossary

This glossary includes terms and definitions for WebSphere eXtreme Scale.

The following cross-references are used in this glossary:
1. See refers the reader from a term to a preferred synonym, or from an acronym

or abbreviation to the defined full form.
2. See also refers the reader to a related or contrasting term.

To view glossaries for other IBM products, go to www.ibm.com/software/
globalization/terminology.

administrator. A person responsible for administrative tasks such as access authorization and content management.
Administrators can also grant levels of authority to users.

agent. A program that performs an action on behalf of a user or other program without user intervention or on a
regular schedule, and reports the results back to the user or program.

APAR. See authorized program analysis report.

API. See application programming interface.

application. One or more computer programs or software components that provide a function in direct support of a
specific business process or processes.

application programming interface (API). An interface that allows an application program that is written in a
high-level language to use specific data or functions of the operating system or another program.

application server. A server program in a distributed network that provides the execution environment for an
application program.

asynchronous. Pertaining to events that are not synchronized in time or do not occur in regular or predictable time
intervals.

asynchronous messaging. A method of communication between programs in which a program places a message on
a message queue, then proceeds with its own processing without waiting for a reply to its message.

asynchronous replica. A shard that receives updates after the transaction commits. This method is faster than a
synchronous replica, but introduces the possibility of data loss because the asynchronous replica can be several
transactions behind the primary shard.

authenticated user. A portal user who has logged in to the portal with a valid account (user ID and password).
Authenticated users have access to all public places.

authentication. A security service that provides proof that a user of a computer system is genuinely who that
person claims to be. Common mechanisms for implementing this service are passwords and digital signatures.
Authentication is distinct from authorization; authentication is not concerned with granting or denying access to
system resources.

authentication alias. An alias that authorizes access to resource adapters and data sources. An authentication alias
contains authentication data, including a user ID and password.

authorization. The process of granting a user, system, or process either complete or restricted access to an object,
resource, or function.

authorization policy. A policy whose policy target is a business service and whose contract contains one or more
assertions that grant permission to run a channel action.

© Copyright IBM Corp. 2009, 2011 279

http://www-306.ibm.com/software/globalization/terminology/
http://www-306.ibm.com/software/globalization/terminology/

authorization table. A table that contains the role to user or group mapping information that identifies the
permitted access of a client to a particular resource.

authorized program analysis report (APAR). A request for correction of a defect in a supported release of an
IBM-supplied program.

autodiscovery. The discovery of service artifacts in a file system, external registry, or another source.

autonomic manager. A set of software or hardware components, configured by policies, which manage the behavior
of other software or hardware components as a human might manage them. An autonomic manager includes a
control loop that consists of monitor, analyze, plan, and execute components.

availability.

1. The condition allowing users to access and use their applications and data.

2. The time periods during which a resource is accessible. For example, a contractor might have an availability of 9
AM to 5 PM every weekday, and 9 AM to 3 PM on Saturdays.

bean. A definition or instance of a JavaBeans component. See also JavaBeans, enterprise bean.

bean class. In Enterprise JavaBeans (EJB) programming, a Java class that implements a javax.ejb.EntityBean class or
javax.ejb.SessionBean class.

Bean Scripting Framework. An architecture for incorporating scripting language functions to Java applications.

bean-managed messaging. A function of asynchronous messaging that gives an enterprise bean complete control
over the messaging infrastructure.

bean-managed persistence (BMP). The mechanism whereby data transfer between an entity bean's variables and a
resource manager is managed by the entity bean. (Sun)

bean-managed transaction (BMT). The capability of the session bean, servlet, or application client component to
manage its own transactions directly, instead of through a container.

binary format. Representation of a decimal value in which each field must be 2 or 4 bytes long. The sign (+ or -) is
in the far left bit of the field, and the number value is in the remaining bits of the field. Positive numbers have a 0 in
the sign bit and are in true form. Negative numbers have a 1 in the sign bit and are in twos complement form.

BMP. See bean-managed persistence.

BMT. See bean-managed transaction.

bootstrap. A small program that loads larger programs during system initialization.

bootstrapping. The process by which an initial reference of the naming service is obtained. The bootstrap setting
and the host name form the initial context for Java Naming and Directory Interface (JNDI) references.

bottleneck. A place in the system where contention for a resource is affecting performance.

bottom-up development. In Web services, the process of developing a service from an existing artifact such as a
Java bean or enterprise bean rather than a Web Services Description Language (WSDL) file.

breakpoint. A marked point in a process or programmatic flow that causes that flow to pause when the point is
reached, typically to allow debugging or monitoring.

build definition file. An XML file that identifies components and characteristics for a customized installation
package (CIP).

build path. The path that is used during compilation of Java source code, in order to find referenced classes that
reside in other projects.

build plan. An XML file that defines the processing necessary to build generation outputs and that specifies the
machine where processing takes place.

280 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

build time data. Objects that are not used by the translator, such as EDI standards, record oriented data document
types, and maps.

bytecode. Machine-independent code generated by the Java compiler and executed by the Java interpreter. (Sun)

cache instance resource. A location where any Java Platform, Enterprise Edition (Java EE) application can store,
distribute, and share data.

cache replication. The sharing of cache IDs, cache entries, and cache invalidations with other servers in the same
replication domain.

catalog. A container that, depending on the container type, holds processes, data, resources, organizations, or reports
in the project tree.

catalog service. A service that controls placement of shards and discovers and monitors the health of containers.

category. A container used in a structure diagram to group elements based on a shared attribute or quality.

cell.

1. A group of managed processes that are federated to the same deployment manager and can include
high-availability core groups.

2. One or more processes that each host runtime components. Each has one or more named core groups.

cell-scoped binding. A binding scope where the binding is not specific to, and not associated with any node or
server. This type of name binding is created under the persistent root context of a cell.

chassis. The metal frame in which various electronic components are mounted.

child node. A node within the scope of another node.

CIP. See customized installation package.

class. In object-oriented design or programming, a model or template that can be used to create objects with a
common definition and common properties, operations, and behavior. An object is an instance of a class.

class file. A compiled Java source file.

class hierarchy. The relationships between classes that share a single inheritance.

class loader. Part of the Java virtual machine (JVM) that is responsible for finding and loading class files. A class
loader affects the packaging of applications and the runtime behavior of packaged applications deployed on
application servers.

class path. A list of directories and JAR files that contain resource files or Java classes that a program can load
dynamically at run time.

classifier. A specialized attribute used for grouping and color-coding process elements.

client. A software program or computer that requests services from a server. See also host.

client application. An application, running on a workstation and linked to a client, that gives the application access
to queuing services on a server.

client/server. Pertaining to the model of interaction in distributed data processing in which a program on one
computer sends a request to a program on another computer and awaits a response. The requesting program is
called a client; the answering program is called a server.

Cloudscape. An embeddable, all Java, object-relational database management system (ORDBMS).

cluster. A group of application servers that collaborate for the purposes of workload balancing and failover.

coarse-grained. Pertaining to viewing a group of objects from an abstract or high level.

coherent cache. Cache that maintains integrity so that all clients see the same data.

Chapter 10. Glossary 281

collection certificate store. A collection of intermediate certificates or certificate revocation lists (CRL) that are used
by a certificate path to build up a certificate chain for validation.

comma delimited file. A file whose records contain fields that are separated by a comma.

command bean. A proxy that can invoke a single operation using an execute() method.

command line. The blank line on a display where commands, option numbers, or selections can be entered.

compilation unit. A portion of a computer program sufficiently complete to be compiled correctly.

compile time. The time period during which a computer program is being compiled into an executable program.

component.

1. A reusable object or program that performs a specific function and works with other components and applications.

2. In Eclipse, one or more plug-ins that work together to deliver a discrete set of functions.

component element. An entity in a component where a breakpoint can be set, such as an activity or Java snippet in
a business process, or a mediation primitive or node in a mediation flow.

component instance. A running component that can be running in parallel with other instances of the same
component.

component test. An automated test of one or more components of an enterprise application, which may include
Java classes, EJB beans, or Web services.

container server. A server instance that can host multiple shards. One Java virtual machine (JVM) can host multiple
container servers.

converter. In Enterprise JavaBeans (EJB) programming, a class that translates a database representation to an object
type and back.

create method. In enterprise beans, a method defined in the home interface and invoked by a client to create an
enterprise bean. (Sun)

credential. In the Java Authentication and Authorization Service (JAAS) framework, a subject class that owns
security-related attributes. These attributes can contain information used to authenticate the subject to new services.

customized installation package (CIP). A customized installation image that can include one or more maintenance
packages, a configuration archive file from a stand-alone server profile, one or more enterprise archive files, scripts,
and other files that help customize the resulting installation.

daemon. A program that runs unattended to perform continuous or periodic functions, such as network control.

dashboard. A Web page that can contain one or more viewers that graphically represent business data.

data grid. A system for accessing terabytes or petrabytes of data.

DB2. A family of IBM licensed programs for relational database management.

deadlock. A condition in which two independent threads of control are blocked, each waiting for the other to take
some action. Deadlock often arises from adding synchronization mechanisms to avoid race conditions.

demilitarized zone (DMZ). A configuration that includes multiple firewalls to add layers of protection between a
corporate intranet and a public network, such as the Internet.

deploy. To place files or install software into an operational environment. In Java Platform, Enterprise Edition (Java
EE), this involves creating a deployment descriptor suitable to the type of application that is being deployed.

deploy phase. See deployment phase.

deployment code. Additional code that enables bean implementation code written by an application developer to
work in a particular EJB runtime environment. Deployment code can be generated by tools that the application
server vendor supplies.

282 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

deployment descriptor. An XML file that describes how to deploy a module or application by specifying
configuration and container options. For example, an EJB deployment descriptor passes information to an EJB
container about how to manage and control an enterprise bean.

deployment directory. The directory where the published server configuration and Web application are located on
the machine where the application server is installed.

deployment environment. A collection of configured clusters, servers, and middleware that collaborate to provide
an environment to host software modules. For example, a deployment environment might include a host for message
destinations, a processor or sorter of business events, and administrative programs.

deployment manager. A server that manages operations for a logical group or cell of other servers.

deployment phase. A phase that includes a combination of creating the hosting environment for your applications
and the deployment of those applications. This includes resolving the application’s resource dependencies,
operational conditions, capacity requirements, and integrity and access constraints.

deployment policy. An optional way to configure an eXtreme Scale environment based on various items, including:
number of systems, servers, partitions, replicas (including type of replica), and heap sizes for each server.

deployment topology. The configuration of servers and clusters in a deployment environment and the physical and
logical relationships among them.

deprecated. Pertaining to an entity, such as a programming element or feature, that is supported but no longer
recommended and that might become obsolete.

derivation. In object-oriented programming, the refinement or extension of one class from another.

deserialization. A method for converting a serialized variable into object data.

destination. An exit point that is used to deliver documents to a back-end system or a trading partner.

digital certificate. An electronic document used to identify an individual, a system, a server, a company, or some
other entity, and to associate a public key with the entity. A digital certificate is issued by a certification authority and
is digitally signed by that authority.

dirty read. A read request that does not involve any locking mechanism. This means that data can be read that
might later be rolled back resulting in an inconsistency between what was read and what is in the database.

distributed eXtreme Scale. A usage pattern for interacting with eXtreme Scale when servers and clients exist on
multiple processes.

DMZ. See demilitarized zone.

DNS. See Domain Name System.

do-while loop. A loop that repeats the same sequence of activities as long as some condition is satisfied. Unlike a
while loop, a do-while loop tests its condition at the end of the loop. This means that its sequence of activities always
runs at least once.

document type definition (DTD). The rules that specify the structure for a particular class of SGML or XML
documents. The DTD defines the structure with elements, attributes, and notations, and it establishes constraints for
how each element, attribute, and notation can be used within the particular class of documents.

domain. An object, icon, or container that contains other objects representing the resources of a domain. The domain
object can be used to manage those resources.

Domain Name System (DNS). The distributed database system that maps domain names to IP addresses.

downstream. Pertaining to the direction of the flow, which is from the first node in the process (upstream) toward
the last node in the process (downstream).

drop-down. See pull-down.

DTD. See document type definition.

Chapter 10. Glossary 283

DTD document definition. A description or layout of an XML document based on an XML DTD.

dynamic cache. A consolidation of several caching activities, including servlets, Web services, and WebSphere
commands into one service where these activities share configuration parameters and work together to improve
performance.

dynamic cluster. A server cluster that uses weights to balance the workloads of its cluster members dynamically,
based on performance information collected from cluster members.

EAR. See enterprise archive.

EAR project. See enterprise application project.

Eclipse. An open-source initiative that provides ISVs and other tool developers with a standard platform for
developing plug-compatible application development tools.

edition. A successive deployment generation of a particular set of versioned artifacts.

editor area. In Eclipse and Eclipse-based products, the area in the workbench window where files are opened for
editing.

EJB. See Enterprise JavaBeans.

EJB container. A container that implements the EJB component contract of the Java EE architecture. This contract
specifies a runtime environment for enterprise beans that includes security, concurrency, life cycle management,
transaction, deployment, and other services. (Sun)

EJB context. In enterprise beans, an object that allows an enterprise bean to invoke services provided by the
container and to obtain information about the caller of a client-invoked method. (Sun)

EJB factory. An access bean that simplifies the creating or finding of an enterprise bean instance.

EJB home object. In Enterprise JavaBeans (EJB) programming, an object that provides the life cycle operations
(create, remove, find) for an enterprise bean. (Sun)

EJB inheritance. A form of inheritance in which an enterprise bean inherits properties, methods, and method-level
control descriptor attributes from another enterprise bean that resides in the same group.

EJB JAR file. A Java archive that contains an EJB module. (Sun)

EJB module. A software unit that consists of one or more enterprise beans and an EJB deployment descriptor. (Sun)

EJB object. In enterprise beans, an object whose class implements the enterprise bean remote interface (Sun).

EJB project. A project that contains the resources needed for EJB applications, including enterprise beans; home,
local, and remote interfaces; JSP files; servlets; and deployment descriptors.

EJB query. In EJB query language, a string that contains an optional SELECT clause specifying the EJB objects to
return, a FROM clause that names the bean collections, an optional WHERE clause that contains search predicates
over the collections, an optional ORDER BY clause that specifies the ordering of the result collection, and input
parameters that correspond to the arguments of the finder method.

EJB reference. A logical name used by an application to locate the home interface of an enterprise bean in the target
operational environment.

EJB server. Software that provides services to an EJB container. An EJB server may host one or more EJB containers.
(Sun)

embedded server. A catalog service or container server that resides in an existing process and is started and
stopped within the process.

endpoint.

1. A JCA application or other client consumer of an event from the enterprise information system.

2. The system that is the origin or destination of a session.

284 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

endpoint listener. The point or address at which incoming messages for a Web service are received by a service
integration bus.

enterprise application project (EAR project). A structure and hierarchy of folders and files that contain a
deployment descriptor and IBM extension document as well as files that are common to all Java EE modules that are
defined in the deployment descriptor.

enterprise archive (EAR). A specialized type of JAR file, defined by the Java EE standard, used to deploy Java EE
applications to Java EE application servers. An EAR file contains EJB components, a deployment descriptor, and Web
archive (WAR) files for individual Web applications. See also Web archive.

enterprise bean. A component that implements a business task or business entity and resides in an EJB container.
Entity beans, session beans, and message-driven beans are all enterprise beans. (Sun) See also bean.

Enterprise JavaBeans (EJB). A component architecture defined by Sun Microsystems for the development and
deployment of object-oriented, distributed, enterprise-level applications (Java EE).

enterprise service bus (ESB). A flexible connectivity infrastructure for integrating applications and services; it offers
a flexible and manageable approach to service-oriented architecture implementation.

entity.

1. A simple Java class that represents a row in a database table or entry in a map.

2. In markup languages such as XML, a collection of characters that can be referenced as a unit, for example to
incorporate often-repeated text or special characters within a document.

entity bean. In EJB programming, an enterprise bean that represents persistent data maintained in a database. Each
entity bean carries its own identity. (Sun)

entry breakpoint. A breakpoint set on a component element that is hit before the component element is invoked.

environment. A named collection of logical and physical resources used to support the performance of a function.

environment variable. A variable that specifies how an operating system or another program runs, or the devices
that the operating system recognizes.

error. A discrepancy between a computed, observed, or measured value or condition and the true, specified, or
theoretically correct value or condition.

error log stream. A continuous flow of error information that is transmitted using a predefined format.

ESB. See enterprise service bus.

event.

1. A change to a state, such as the completion or failure of an operation, business process, or human task, that can
trigger a subsequent action, such as persisting the event data to a data repository or invoking another business
process.

2. A change to data in an enterprise information system (EIS) that is processed by the adapter and used to deliver
business objects from the EIS to the endpoints (applications) that need to be notified of the change.

evictor. A component that controls the membership of entries in each BackingMap instance. Sparse caches can use
evictors to automatically remove data from the cache without affecting the database.

exception. A condition or event that cannot be handled by a normal process.

exception handler. A set of routines that responds to an abnormal condition. An exception handler is able to
interrupt and to resume the normal running of processes.

exclusive lock. A lock that prevents concurrently executing application processes from accessing database data. See
also shared lock.

execution trace. A chain of events that is recorded and displayed in a hierarchal format on the Events page of the
integration test client.

Chapter 10. Glossary 285

export. An exposed interface from a Service Component Architecture (SCA) module that offers a business service to
the outside world. An export has a binding that defines how the service can be accessed by service requesters, for
example, as a Web service.

export file.

1. A file created during the development process for inbound operations that contains the configuration settings for
inbound processing.

2. The file containing data that has been exported.

expression. An SQL or XQuery operand or a collection of SQL or XQuery operators and operands that yields a
single value.

Extensible Markup Language (XML). A standard metalanguage for defining markup languages that is based on
Standard Generalized Markup Language (SGML).

eXtreme Scale grid. A pattern that is used to interact with eXtreme Scale when all of the data and clients are in one
process.

factory. In object-oriented programming, a class that is used to create instances of another class. A factory is used to
isolate the creation of objects of a particular class into one place so that new functions can be provided without
widespread code changes.

failover. An automatic operation that switches to a redundant or standby system in the event of a software,
hardware, or network interruption.

fine-grained. Pertaining to viewing an individual object in detail.

fire. In object-oriented programming, to cause a state transition.

firewall. A network configuration, typically both hardware and software, that prevents unauthorized traffic into and
out of a secure network.

fix pack. A cumulative collection of fixes that is made available between scheduled refresh packs, manufacturing
refreshes, or releases. It is intended to allow customers to move to a specific maintenance level. See also interim fix.

folder. A container used to organize objects.

for loop. A loop that repeats the same sequence of activities a specified number of times.

fork. A process element that makes copies of its input and forwards them by several processing paths in parallel.

garbage collection. A routine that searches memory to reclaim space from program segments or inactive data.

General Inter-ORB Protocol (GIOP). A protocol that Common Object Request Broker Architecture (CORBA) uses to
define the format of messages.

generic object. An object that is used in API calls and XPATH expressions to refer to concepts, custom entities, or
collections. For example, the XPATH expression /WSRR/GenericObject will retrieve all concepts from WebSphere
Service Registry and Repository.

getter method. A method whose purpose is to get the value of an instance or class variable. This allows another
object to find out the value of one of its variables.

GIOP. See General Inter-ORB Protocol.

global.

1. Pertaining to an element that is available to any process in the workspace. A global element appears in the project
tree and can be used in multiple processes. Tasks, processes, repositories, and services can be either global (referenced
by any process in the project) or local (specific to a single process).

2. Pertaining to information available to more than one program or subroutine.

global attribute. In XML, an attribute that is declared as a child of the schema element rather than as part of a
complex type definition. Global attributes can be referenced in one or more content models using the ref attribute.

286 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

global element. In XML, an element that is declared as a child of the schema element rather than as part of a
complex type definition. Global elements can be referenced in one or more content models using the ref attribute.

global instance identifier. A globally unique identifier that is generated either by the application or by the emitter
and is used as a primary key for event identification.

global security. Pertains to all applications running in the environment and determines whether security is used, the
type of registry used for authentication, and other values, many of which act as defaults.

global transaction. A recoverable unit of work performed by one or more resource managers in a distributed
transaction environment and coordinated by an external transaction manager.

global variable. A variable that is used to hold and manipulate values assigned to it during translation and that is
shared across maps and across document translations. One of the three types of variables supported by the Data
Interchange Services mapping command language.

group.

1. A collection of users who can share access authorities for protected resources.

2. A set of related documents within an interchange. An interchange can contain zero to many groups.

3. In places, two or more people who are grouped for membership in a place.

HA. See high availability.

HA group. A collection of one or more members used to provide high availability for a process.

HA policy. A set of rules that is defined for an HA group that dictate whether zero (0), or more members are
activated. The policy is associated with a specific HA group by matching the policy match criteria with the group
name.

health. The general condition or state of the database environment.

heartbeat. A signal that one entity sends to another to convey that it is still active.

high availability (HA). Pertaining to a clustered system that is reconfigured when node or daemon failures occur,
so that workloads can be redistributed to the remaining nodes in the cluster.

high availability manager. A framework within which core group membership is determined and status is
communicated between core group members.

host.

1. A computer that is connected to a network and that provides an access point to that network. The host can be a
client, a server, or both a client and server simultaneously.

2. In performance profiling, a machine that owns processes that are being profiled. See also server.

host name.

1. In Internet communication, the name given to a computer. The host name might be a fully qualified domain name
such as mycomputer.city.company.com, or it might be a specific subname such as mycomputer.

2. The network name for a network adapter on a physical machine in which the node is installed.

host system. An enterprise mainframe computer system that hosts 3270 applications. In the 3270 terminal service
development tools, the developer uses the 3270 terminal service recorder to connect to the host system.

HTTP over SSL (HTTPS). A Web protocol for secure transactions that encrypts and decrypts user page requests and
pages returned by the Web server.

HTTPS.

1. See HTTP over SSL.

2. See Hypertext Transfer Protocol Secure.

Chapter 10. Glossary 287

Hypertext Transfer Protocol Secure (HTTPS). An Internet protocol that is used by Web servers and Web browsers
to transfer and display hypermedia documents securely across the Internet.

IDE. See integrated development environment.

if-then rule. A rule in which the action (then part) is performed only when the condition (if part) is true.

IIOP. See Internet Inter-ORB Protocol.

import.

1. A development artifact that imports a service that is external to a module.

2. The point at which an SCA module accesses an external service, (a service outside the SCA module) as if it was
local. An import defines interactions between the SCA module and the service provider. An import has a binding and
one or more interfaces.

index. A set of pointers that are logically ordered by the values of a key. Indexes provide quick access to data and
can enforce uniqueness of the key values for the rows in the table.

information center. A collection of information that provides support for users of one or more products, can be
launched separately from the product, and includes a list of topics for navigation and a search engine.

inheritance. An object-oriented programming technique in which existing classes are used as a basis for creating
other classes. Through inheritance, more specific elements incorporate the structure and behavior of more general
elements.

installation package. An installable unit of a software product. Software product packages are separately installable
units that can operate independently from other packages of that software product.

installation target. The system on which selected installation packages are installed.

instance. A specific occurrence of an object that belongs to a class.

instantiate. To represent an abstraction with a concrete instance.

integrated development environment (IDE). A set of software development tools, such as source editors, compilers,
and debuggers, that are accessible from a single user interface.

interface. A collection of operations that are used to specify a service of a class or a component.

interim fix. A certified fix that is generally available to all customers between regularly scheduled fix packs, refresh
packs, or releases. See also fix pack.

Internet Inter-ORB Protocol (IIOP). A protocol used for communication between Common Object Request Broker
Architecture (CORBA) object request brokers.

Internet Protocol (IP). A protocol that routes data through a network or interconnected networks. This protocol acts
as an intermediary between the higher protocol layers and the physical network.

invocation. The activation of a program or procedure.

IP. See Internet Protocol.

IP sprayer. A device that is located between inbound requests from the users and the application server nodes that
reroutes requests across nodes.

iteration. See loop.

iterator. A class or construct that is used to step through a collection of objects one at a time.

JAAS. See Java Authentication and Authorization Service.

JAF. See JavaBeans Activation Framework.

JAR file. A Java archive file. See also Web archive, enterprise archive.

288 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

Java. An object-oriented programming language for portable interpretive code that supports interaction among
remote objects. Java was developed and specified by Sun Microsystems, Incorporated.

Java API for XML (JAX). A set of Java-based APIs for handling various operations involving data defined through
Extensible Markup Language (XML).

Java archive. A compressed file format for storing all of the resources that are required to install and run a Java
program in a single file. See also Web archive, enterprise archive.

Java Authentication and Authorization Service (JAAS). In Java EE technology, a standard API for performing
security-based operations. Through JAAS, services can authenticate and authorize users while enabling the
applications to remain independent from underlying technologies.

Java class. A class that is written in the Java language.

Java Command Language. A scripting language for the Java environment that is used to create Web content and to
control Java applications.

Java Connector security. An architecture designed to extend the end-to-end security model for Java EE-based
applications to include enterprise information systems (EIS).

Java Database Connectivity (JDBC). An industry standard for database-independent connectivity between the Java
platform and a wide range of databases. The JDBC interface provides a call level interface for SQL-based and
XQuery-based database access.

Java EE. See Java Platform, Enterprise Edition.

Java EE application. Any deployable unit of Java EE functionality. This unit can be a single module or a group of
modules packaged into an enterprise archive (EAR) file with a Java EE application deployment descriptor. (Sun)

Java EE Connector Architecture (JCA). A standard architecture for connecting the Java EE platform to
heterogeneous enterprise information systems (EIS).

Java EE server. A runtime environment that provides EJB or Web containers.

Java file. An editable source file (with .java extension) that can be compiled into bytecode (a .class file).

Java Management Extensions (JMX). A means of doing management of and through Java technology. JMX is a
universal, open extension of the Java programming language for management that can be deployed across all
industries, wherever management is needed.

Java Message Service (JMS). An application programming interface that provides Java language functions for
handling messages.

Java Naming and Directory Interface (JNDI). An extension to the Java platform that provides a standard interface
for heterogeneous naming and directory services.

Java platform. A collective term for the Java language for writing programs; a set of APIs, class libraries, and other
programs used in developing, compiling, and error-checking programs; and a Java virtual machine which loads and
runs the class files. (Sun)

Java Platform, Enterprise Edition (Java EE). An environment for developing and deploying enterprise applications,
defined by Sun Microsystems Inc. The Java EE platform consists of a set of services, application programming
interfaces (APIs), and protocols that provide the functionality for developing multitiered, Web-based applications.
(Sun)

Java Platform, Standard Edition (Java SE). The core Java technology platform. (Sun)

Java project. In Eclipse, a project that contains compilable Java source code and is a container for source folders or
packages.

Java runtime environment. A subset of a Java developer kit that contains the core executable programs and files
that constitute the standard Java platform. The JRE includes the Java virtual machine (JVM), core classes, and
supporting files.

Chapter 10. Glossary 289

Java SE. See Java Platform, Standard Edition.

Java SE Development Kit (JDK). The name of the software development kit that Sun Microsystems provides for the
Java platform.

Java Secure Socket Extension (JSSE). A Java package that enables secure Internet communications. It implements a
Java version of the Secure Sockets Layer (SSL) and Transport Layer Security (TSL) protocols and supports data
encryption, server authentication, message integrity, and optionally client authentication.

Java Specification Request (JSR). A formally proposed specification for the Java platform.

Java virtual machine (JVM). A software implementation of a processor that runs compiled Java code (applets and
applications).

Java virtual machine Profiler Interface (JVMPI). A profiling tool that supports the collection of information, such as
data about garbage collection and the Java virtual machine (JVM) API that runs the application server.

JavaBeans. As defined for Java by Sun Microsystems, a portable, platform-independent, reusable component model.
See also bean.

JavaBeans Activation Framework (JAF). A standard extension to the Java platform that determines arbitrary data
types and available operations and can instantiate a bean to run pertinent services.

Javadoc.

1. A tool that parses the declarations and documentation comments in a set of source files and produces a set of
HTML pages describing the classes, inner classes, interfaces, constructors, methods, and fields. (Sun)

2. Pertaining to the tool that parses the declarations and documentation comments in a set of source files and
produces a set of HTML pages describing the classes, inner classes, interfaces, constructors, methods, and fields.

JavaMail API. A platform and protocol-independent framework for building Java-based mail client applications.

JavaScript. A Web scripting language that is used in both browsers and Web servers. (Sun)

JavaScript Object Notation. A lightweight data-interchange format that is based on the object-literal notation of
JavaScript. JSON is programming-language neutral but uses conventions from languages that include C, C++, C#,
Java, JavaScript, Perl, Python.

JavaServer Pages (JSP). A server-side scripting technology that enables Java code to be dynamically embedded
within Web pages (HTML files) and run when the page is served, in order to return dynamic content to a client.

JAX. See Java API for XML.

JCA. See Java EE Connector Architecture.

JDBC. See Java Database Connectivity.

JDK. See Java SE Development Kit.

JMS. See Java Message Service.

JMS data binding. A data binding that provides a mapping between the format used by an external JMS message
and the Service Data Object (SDO) representation used by a Service Component Architecture (SCA) module.

JMX. See Java Management Extensions.

JNDI. See Java Naming and Directory Interface.

join.

1. A process element that recombines and synchronizes parallel processing paths after a decision or fork. A join waits
for input to arrive at each of its incoming branches before permitting the process to continue.

2. An SQL relational operation in which data can be retrieved from two tables, typically based on a join condition
specifying join columns.

3. The configuration on an incoming link that determines the behavior of the link.

290 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

JSP. See JavaServer Pages.

JSP file. A scripted HTML file that has a .jsp extension and allows for the inclusion of dynamic content in Web
pages. A JSP file can be directly requested as a URL, called by a servlet, or called from within an HTML page.

JSP page. A text-based document using fixed template data and JSP elements that describes how to process a
request to create a response. (Sun)

JSR. See Java Specification Request.

JSSE. See Java Secure Socket Extension.

JVM. See Java virtual machine.

JVMPI. See Java virtual machine Profiler Interface.

Jython. An implementation of the Python programming language that is integrated with the Java platform.

key.

1. A cryptographic mathematical value that is used to digitally sign, verify, encrypt, or decrypt a message.

2. Information that characterizes and uniquely identifies the real-world entity that is being tracked by a monitoring
context.

keyword. One of the predefined words of a programming language, artificial language, application, or command.

LDAP. See Lightweight Directory Access Protocol.

LDAP directory. A type of repository that stores information on people, organizations, and other resources and that
is accessed using the LDAP protocol. The entries in the repository are organized into a hierarchical structure, and in
some cases the hierarchical structure reflects the structure or geography of an organization.

library.

1. A collection of model elements, including business items, processes, tasks, resources, and organizations.

2. A project that is used for the development, version management, and organization of shared resources. Only a
subset of the artifact types can be created and stored in a library, such as business objects and interfaces.

life cycle. One complete pass through the four phases of software development: inception, elaboration, construction
and transition.

Lightweight Directory Access Protocol (LDAP). An open protocol that uses TCP/IP to provide access to directories
that support an X.500 model and that does not incur the resource requirements of the more complex X.500 Directory
Access Protocol (DAP). For example, LDAP can be used to locate people, organizations, and other resources in an
Internet or intranet directory.

Lightweight Third Party Authentication (LTPA). A protocol that uses cryptography to support security in a
distributed environment.

listener. A program that detects incoming requests and starts the associated channel.

listener port. An object that defines the association between a connection factory, a destination, and a deployed
message-driven bean. Listener ports simplify the administration of the associations between these resources.

load balancing. The monitoring of application servers and management of the workload on servers. If one server
exceeds its workload, requests are forwarded to another server with more capacity.

loader. A component that reads data from and writes data to a persistent store.

local.

1. Pertaining to a device, file, or system that is accessed directly from a user system, without the use of a
communication line.

2. Pertaining to an element that is available only in its own process.

Chapter 10. Glossary 291

local database. A database that is located on the workstation in use.

lock. A means of preventing uncommitted changes made by one application process from being perceived by
another application process and for preventing one application process from updating data that is being accessed by
another process. A lock ensures the integrity of data by preventing concurrent users from accessing inconsistent data.

logging. The recording of data about specific events on the system, such as errors.

long name. The property that specifies the logical name for the server on the z/OS® platform.

loop. A sequence of instructions performed repeatedly.

LTPA. See Lightweight Third Party Authentication.

maintenance mode. A state of a node or server that an administrator can use to diagnose, maintain, or tune the
node or server without disrupting incoming traffic in a production environment.

Managed Bean (MBean). In the Java Management Extensions (JMX) specification, the Java objects that implement
resources and their instrumentation.

map.

1. A data structure that maps keys to values.

2. A file that defines the transformation between sources and targets.

3. In the EJB development environment, the specification of how the container-managed persistent fields of an
enterprise bean correspond to columns in a relational database table or other persistent storage.

MBean. See Managed Bean.

MBean provider. A library containing an implementation of a Java Management Extensions (JMX) MBean and its
MBean Extensible Markup Language (XML) descriptor file.

memory leak. The effect of a program that maintains references to objects that are no longer required and therefore
need to be reclaimed.

method. In object-oriented programming, an operation that an object can perform. An object can have many
methods.

metric. A holder for information, typically a business performance measurement, in a monitoring context.

namespace. A logical container in which all the names are unique. The unique identifier for an artifact is composed
of the namespace and the local name of the artifact.

node.

1. A logical grouping of managed servers.

2. Any item on a tree control, including a simple element, compound element, mapping command, comment, or
group node.

3. In XML, the smallest unit of valid, complete structure in a document.

4. The fundamental shapes that make up a diagram.

node agent. An administrative agent that manages all application servers on a node and represents the node in the
management cell.

object. In object-oriented design or programming, a concrete realization (instance) of a class that consists of data and
the operations associated with that data. An object contains the instance data that is defined by the class, but the
class owns the operations that are associated with the data.

Object Request Broker (ORB). In object-oriented programming, software that serves as an intermediary by
transparently enabling objects to exchange requests and responses.

292 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

object-oriented programming. A programming approach based on the concepts of data abstraction and inheritance.
Unlike procedural programming techniques, object-oriented programming concentrates not on how something is
accomplished but instead on what data objects comprise the problem and how they are manipulated.

ObjectGrid. A grid-enabled, memory database for applications that are written in Java. ObjectGrid can be used as
an in-memory database or to distribute data across a network.

ODBC. See Open Database Connectivity.

Open Database Connectivity (ODBC). A standard application programming interface (API) for accessing data in
both relational and nonrelational database management systems. Using this API, database applications can access
data stored in database management systems on a variety of computers even if each database management system
uses a different data storage format and programming interface.

open source. Pertaining to software whose source code is publicly available for use or modification. Open source
software is typically developed as a public collaboration and made freely available, although its use and
redistribution might be subject to licensing restrictions. Linux is a well known example of open source software.

operation. An implementation of functions or queries that an object might be called to perform.

ORB. See Object Request Broker.

organization. An entity where people cooperate to accomplish specified objectives, such as an enterprise, a
company, or a factory.

package.

1. In Java programming, a group of types. Packages are declared with the package keyword. (Sun)

2. The wrapper around the document content that defines the format used to transmit a document over the Internet,
for example, RNIF, AS1, and AS2.

3. To assemble components into modules and modules into enterprise applications.

partitioning facility. A programming framework and a system management infrastructure that supports the concept
of partitioning for enterprise beans, HTTP traffic, and database access.

Performance Monitoring Infrastructure (PMI). A set of packages and libraries assigned to gather, deliver, process,
and display performance data.

permission. Authorization to perform activities, such as reading and writing local files, creating network
connections, and loading native code.

persist. To be maintained across session boundaries, typically in nonvolatile storage such as a database system or a
directory.

persistence.

1. A characteristic of data that is maintained across session boundaries, or of an object that continues to exist after the
execution of the program or process that created it, typically in nonvolatile storage such as a database system.

2. In Java EE, the protocol for transferring the state of an entity bean between its instance variables and an
underlying database. (Sun)

persistent data store. A nonvolatile storage for event data, such as a database system, that is maintained across
session boundaries and that continues to exist after the execution of the program or process that created it.

pessimistic locking. A locking strategy whereby a lock is held between the time that a row is selected and the time
that a searched update or delete operation is attempted on that row.

plug-in. A separately installable software module that adds function to an existing program, application, or
interface.

PMI. See Performance Monitoring Infrastructure.

point-to-point. Pertaining to a style of messaging application in which the sending application knows the
destination of the message.

Chapter 10. Glossary 293

policy. A set of considerations that influence the behavior of a managed resource or a user.

port. As defined in a Web Services Description Language (WSDL) document, a single endpoint that is defined as a
combination of a binding and a network address.

port number. In Internet communications, the identifier for a logical connector between an application entity and
the transport service.

primary key.

1. An object that uniquely identifies an entity bean of a particular type.

2. In a relational database, a key that uniquely identifies one row of a database table.

primitive type. In Java, a category of data type that describes a variable that contains a single value of the
appropriate size and format for its type: a number, a character, or a Boolean value. Examples of primitive types
include byte, short, int, long, float, double, char, boolean.

process.

1. A progressively continuing procedure consisting of a series of controlled activities that are systematically directed
toward a particular result or end.

2. The sequence of documents or messages to be exchanged between the Community Managers and participants to
run a business transaction.

profile. Data that describes the characteristics of a user, group, resource, program, device, or remote location.

program temporary fix (PTF). For System i®, System p®, and System z® products, a fix that is tested by IBM and is
made available to all customers. See also fix pack.

prompt. A component of an action that indicates that user input is required for a field before making a transition to
an output screen.

property. A characteristic of an object that describes the object. A property can be changed or modified. Properties
can describe an object name, type, value, or behavior, among other things.

protocol binding. A binding that enables the enterprise service bus to process messages independently of the
communication protocol.

proxy. An application gateway from one network to another for a specific network application such as Telnet or
FTP, for example, where a firewall proxy Telnet server performs authentication of the user and then lets the traffic
flow through the proxy as if it were not there. Function is performed in the firewall and not in the client workstation,
causing more load in the firewall.

proxy cluster. A group of proxy servers that distributes HTTP requests across the cluster.

proxy peer access point. A means of identifying the communication settings for a peer access point that cannot be
accessed directly.

proxy server.

1. A server that acts as an intermediary for HTTP Web requests that are hosted by an application or a Web server. A
proxy server acts as a surrogate for the content servers in the enterprise.

2. A server that receives requests intended for another server and that acts on behalf of the client (as the client's
proxy) to obtain the requested service. A proxy server is often used when the client and the server are incompatible
for direct connection. For example, the client is unable to meet the security authentication requirements of the server
but should be permitted some services.

PTF. See program temporary fix.

public.

1. In object-oriented programming, pertaining to a class member that is accessible to all classes.

2. In the Java programming language, pertains to a method or variable that can be accessed by elements residing in
other classes. (Sun)

294 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

QoS. See quality of service.

qualifier. A simple element that gives another generic compound or simple element a specific meaning. Qualifiers
are used in mapping single or multiple occurrences. A qualifier can also be used to denote the namespace used to
interpret the second part of the name, typically referred to as the ID.

quality of service (QoS). A set of communication characteristics that an application requires. Quality of Service
(QoS) defines a specific transmission priority, level of route reliability, and security level.

query.

1. A request for information from a database based on specific conditions: for example, a request for a list of all
customers in a customer table whose balances are greater than USD1000.

2. A reusable request for information about one or more model elements

read-through cache. A sparse cache that loads data entries by key as they are requested. When data cannot be
found in the cache, the missing data is retrieved with the loader, which loads the data from the back-end data
repository and inserts the data into the cache.

recursion. A programming technique in which a program or routine calls itself to perform successive steps in an
operation, with each step using the output of the preceding step.

refresh pack. A cumulative collection of fixes that contains new functions. See also fix pack, interim fix.

region. A contiguous area of virtual storage that has common characteristics and that can be shared between
processes.

replica. A server that contains a copy of the directory or directories of another server. Replicas back up servers in
order to enhance performance or response times and to ensure data integrity.

replication. The process of maintaining a defined set of data in more than one location. Replication involves
copying designated changes for one location (a source) to another (a target) and synchronizing the data in both
locations.

resource.

1. A discrete asset, for example application suites, applications, business services, interfaces, endpoints, and business
events.

2. A facility of a computing system or operating system required by a job, task, or running program. Resources
include main storage, input/output devices, the processing unit, data sets, files, libraries, folders, application servers,
and control or processing programs.

3. A person, piece of equipment, or material that is used to perform a task or a project. Each resource is a particular
occurrence or example of a resource definition.

role.

1. A description of a function to be carried out by an individual or bulk resource, and the qualifications required to
fulfill the function. In simulation and analysis, the term role is also used to refer to the qualified resources.

2. A job function that identifies the tasks that a user can perform and the resources to which a user has access. A user
can be assigned one or more roles.

3. A logical group of principals that provides a set of permissions. Access to operations is controlled by granting
access to a role.

4. In a relationship, a role determines the function and participation of entities. Roles capture structure and constraint
requirements on participating entities and their manner of participation. For example, in an employment relationship,
the roles are employer and employee.

root. The user name for the system user with the most authority.

run time. The time period during which a computer program is running.

runtime topology. A depiction of the momentary state of the environment.

Chapter 10. Glossary 295

scalability. The ability of a system to expand as resources, such as processors, memory, or storage, are added.

scope.

1. A specification of the boundary within which system resources can be used.

2. In Web services, a property that identifies the lifetime of the object serving the invocation request.

script. A series of commands, combined in a file, that carry out a particular function when the file is run. Scripts are
interpreted as they are run.

scripting. A style of programming that reuses existing components as a base for building applications.

SDK. See software development kit.

Secure Sockets Layer (SSL). A security protocol that provides communication privacy. With SSL, client/server
applications can communicate in a way that is designed to prevent eavesdropping, tampering, and message forgery.

security administrator. The person who controls access to business data and program functions.

security token. A representation of a set of claims that are made by a client that can include a name, password,
identity, key, certificate, group, privilege, and so on.

serialization. In object-oriented programming, the writing of data in sequential fashion to a communications
medium from program memory.

serializer. A method for converting object data to another form such as binary or XML.

servant region. A contiguous area of virtual storage that is dynamically started as load increases and automatically
stopped as load eases.

server. A software program or a computer that provides services to other software programs or other computers.
See also host.

server cluster. A group of servers that are typically on different physical machines and have the same applications
configured within them, but operate as a single logical server.

service level agreement (SLA). A contract between a customer and a service provider that specifies the expectations
for the level of service with respect to availability, performance, and other measurable objectives.

servlet. A Java program that runs on a Web server and extends the server functions by generating dynamic content
in response to Web client requests. Servlets are commonly used to connect databases to the Web.

session.

1. A logical or virtual connection between two stations, software programs, or devices on a network that allows the
two elements to communicate and exchange data.

2. A series of requests to a servlet originating from the same user at the same browser.

3. In Java EE, an object used by a servlet to track user interaction with a Web application across multiple HTTP
requests.

session affinity. A method of configuring applications in which a client is always connected to the same server.
These configurations disable workload management after an initial connection by forcing a client request to always
go to the same server.

setter method. A method whose purpose is to set the value of an instance or class variable. This capability allows
another object to set the value of one of its variables.

shard. An instance of a partition. A shard can be a primary or replica.

shared lock. A lock that limits concurrently running application processes to read-only operations on database data.

shell script. A program, or script, that is interpreted by the shell of an operating system.

signer certificate. The trusted certificate entry that is typically in a truststore file.

296 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

silent installation. An installation that does not send messages to the console but instead stores messages and errors
in log files. A silent installation can use response files for data input.

silent mode. A method for installing or uninstalling a product component from the command line with no GUI
display. When using silent mode, you specify the data required by the installation or uninstallation program directly
on the command line or in a file (called an option file or response file).

skeleton. Scaffolding for an implementation class.

SLA. See service level agreement.

software development kit (SDK). A set of tools, APIs, and documentation to assist with the development of
software in a specific computer language or for a particular operating environment.

SQL. See Structured Query Language.

SQL query. A component of certain SQL statements that specifies a result table.

SSL. See Secure Sockets Layer.

SSL channel. A type of channel within a transport chain that associates a Secure Sockets Layer (SSL) configuration
repertoire with the transport chain.

stack. An area in memory that typically stores information such as temporary register information, values of
parameters, and return addresses of subroutines and is based on the principle of last in, first out (LIFO).

stand-alone. Independent of any other device, program, or system. In a network environment, a stand-alone
machine accesses all required resources locally.

stand-alone server. A catalog service or container server that is managed from the operating system that starts and
stops the server process.

static. A Java programming language keyword that is used to define a variable as a class variable.

string. In programming languages, the form of data used for storing and manipulating text.

Structured Query Language (SQL). A standardized language for defining and manipulating data in a relational
database.

subclass. In Java, a class that is derived from a particular class, through inheritance.

subquery. In SQL, a subselect used within a predicate, for example, a select-statement within the WHERE or
HAVING clause of another SQL statement.

synchronize. To add, subtract, or change one feature or artifact to match another.

synchronous process. A process that starts by invoking a request-response operation. The result of the process is
returned by the same operation.

synchronous replica. A shard that receives updates as part of the transaction on the primary shard to guarantee
data consistency, which can increase the response time compared with an asynchronous replica.

syntax. The rules for the construction of a command or statement.

systems analyst. A specialist who is responsible for translating business requirements into system definitions and
solutions.

TCP. See Transmission Control Protocol.

TCP channel. A type of channel within a transport chain that provides client applications with persistent
connections within a local area network (LAN).

TCP/IP. See Transmission Control Protocol/Internet Protocol.

TCP/IP monitoring server. A runtime environment that monitors all requests and responses between a Web browser
and an application server, as well as TCP/IP activity.

Chapter 10. Glossary 297

thin application client. A lightweight, downloadable Java application run time capable of interacting with
enterprise beans.

thin client. A client that has little or no installed software but has access to software that is managed and delivered
by network servers that are attached to it. A thin client is an alternative to a full-function client such as a
workstation.

thread. A stream of computer instructions that is in control of a process. In some operating systems, a thread is the
smallest unit of operation in a process. Several threads can run concurrently, performing different jobs.

thread contention. A condition in which a thread is waiting for a lock or object that another thread holds.

threshold. A setting that applies to an interrupt in a simulation that defines when a process simulation should be
halted based on a condition existing for a specified proportion of occurrences of some event.

throughput. The measure of the amount of work performed by a device, such as a computer or printer, over a
period of time, for example, number of jobs per day.

time to live. The time interval in seconds that an entry can exist in the cache before that entry is discarded.

timeout. A time interval that is allotted for an event to occur or complete before operation is interrupted.

timer. A task that produces output at certain points in time.

timing constraint. A specialized validation action used to measure the duration of a method call or a sequence of
method calls.

Tivoli Performance Viewer. A Java client that retrieves the Performance Monitoring Infrastructure (PMI) data from
an application server and displays it in various formats.

token.

1. A marker used to track the current state of a process instance during a simulation run.

2. A particular message or bit pattern that signifies permission or temporary control to transmit over a network.

topology. The physical or logical mapping of the location of networking components or nodes within a network.
Common network topologies include bus, ring, star, and tree.

transaction. A process in which all of the data modifications that are made during a transaction are either
committed together as a unit or rolled back as a unit.

Transmission Control Protocol (TCP). A communication protocol used in the Internet and in any network that
follows the Internet Engineering Task Force (IETF) standards for internetwork protocol. TCP provides a reliable
host-to-host protocol in packet-switched communication networks and in interconnected systems of such networks.

Transmission Control Protocol/Internet Protocol (TCP/IP). An industry-standard, nonproprietary set of
communication protocols that provides reliable end-to-end connections between applications over interconnected
networks of different types.

truststore file. A key database file that contains the public keys for a trusted entity.

type.

1. In Java programming, a class or interface.

2. In a WSDL document, an element that contains data type definitions using some type system (such as XSD).

UDDI. See Universal Description, Discovery, and Integration.

Uniform Resource Identifier (URI).

1. A compact string of characters for identifying an abstract or physical resource.

2. A unique address that is used to identify content on the Web, such as a page of text, a video or sound clip, a still
or animated image, or a program. The most common form of URI is the Web page address, which is a particular
form or subset of URI called a Uniform Resource Locator (URL). A URI typically describes how to access the
resource, the computer that contains the resource, and the name of the resource (a file name) on the computer.

298 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

Uniform Resource Locator (URL). The unique address of an information resource that is accessible in a network
such as the Internet. The URL includes the abbreviated name of the protocol used to access the information resource
and the information used by the protocol to locate the information resource.

Uniform Resource Name (URN). A name that uniquely identifies a Web service to a client.

Universal Description, Discovery, and Integration (UDDI). A set of standards-based specifications that enables
companies and applications to quickly and easily find and use Web services over the Internet.

Universally Unique Identifier (UUID). The 128-bit numerical identifier that is used to ensure that two components
do not have the same identifier.

UNIX System Services. An element of z/OS that creates a UNIX environment that conforms to XPG4 UNIX 1995
specifications and that provides two open-system interfaces on the z/OS operating system: an application
programming interface (API) and an interactive shell interface.

upgradeable lock. A lock that identifies the intent to update a cache entry when using a pessimistic lock.

upstream. Pertaining to the direction of the flow, which is from the start of the process (upstream) toward the end
of the process (downstream).

URI. See Uniform Resource Identifier.

URL. See Uniform Resource Locator.

URL scheme. A format that contains another object reference.

URN. See Uniform Resource Name.

UUID. See Universally Unique Identifier.

variable. A representation of a changeable value.

version. A separately licensed program that typically has significant new code or new function.

virtual host. A configuration enabling a single host machine to resemble multiple host machines. Resources
associated with one virtual host cannot share data with resources associated with another virtual host, even if the
virtual hosts share the same physical machine.

virtual machine. An abstract specification for a computing device that can be implemented in different ways in
software and hardware.

virtualization. A technique that encapsulates the characteristics of resources from the way in which other systems
interact with those resources.

waiter. A thread waiting for a connection.

WAR. See Web archive.

WCCM. See WebSphere Common Configuration Model.

Web archive (WAR). A compressed file format, defined by the Java EE standard, for storing all the resources
required to install and run a Web application in a single file. See also enterprise archive.

Web browser. A client program that initiates requests to a Web server and displays the information that the server
returns.

Web component. A servlet, JavaServer Pages (JSP) file, or a HyperText Markup Language (HTML) file. One or more
Web components make up a Web module.

Web container. A container that implements the Web component contract of the Java EE architecture. (Sun)

Web container channel. A type of channel within a transport chain that creates a bridge in the transport chain
between an HTTP inbound channel and a servlet or JavaServer Pages (JSP) engine.

Chapter 10. Glossary 299

Web crawler. A type of crawler that explores the Web by retrieving a Web document and following the links within
that document.

Web server. A software program that is capable of servicing Hypertext Transfer Protocol (HTTP) requests.

Web server plug-in. A software module that supports the Web server in communicating requests for dynamic
content, such as servlets, to the application server.

Web server separation. A topology where the Web server is physically separated from the application server.

Web site. A related collection of files available on the Web that is managed by a single entity (an organization or an
individual) and contains information in hypertext for its users. A Web site often includes hypertext links to other Web
sites.

WebSphere. An IBM brand name that encompasses tools for developing e-business applications and middleware for
running Web applications.

WebSphere Common Configuration Model (WCCM). A model that provides for programmatic access to
configuration data.

what you see is what you get (WYSIWYG). A capability of an editor to continually display pages exactly as they
will be printed or otherwise rendered.

while loop. A loop that repeats the same sequence of activities as long as some condition is satisfied. The while
loop tests its condition at the beginning of every loop. If the condition is false from the start, the sequence of
activities contained in the loop never runs.

WLM. See Workload Manager.

workload management. The optimization of the distribution of incoming work requests to the application servers,
enterprise beans, servlets and other objects that can effectively process the request.

Workload Manager (WLM). A component of z/OS that provides the ability to run multiple workloads at the same
time within one z/OS image or across multiple images.

workspace.

1. A directory on disk that contains all project files, as well as information such as preferences.

2. A temporary repository of configuration information that administrative clients use.

3. In Eclipse, the collection of projects and other resources that the user is currently developing in the workbench.
Metadata about these resources resides in a directory on the file system; the resources might reside in the same
directory.

write-behind cache. A cache that asynchronously writes each write operation to the database using a loader.

write-through cache. A cache that synchronously writes each write operation to the database using a loader.

WYSIWYG. See what you see is what you get.

X/Open XA. The X/Open Distributed Transaction Processing XA interface. A proposed standard for distributed
transaction communication. The standard specifies a bidirectional interface between resource managers that provide
access to shared resources within transactions, and between a transaction service that monitors and resolves
transactions.

XA. A bidirectional interface between one or more resource managers that provide access to shared resources and a
transaction manager that monitors and resolves transactions.

XML. See Extensible Markup Language.

z/OS. An IBM mainframe operating system that uses 64-bit real storage.

zone-based support. A function that enables rules-based shard placement to improve grid availability by placing
shards across different data centers, whether on different floors or even in different buildings or geographies.

300 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM's product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any of IBM's
intellectual property rights may be used instead of the IBM product, program, or
service. Evaluation and verification of operation in conjunction with other
products, except those expressly designated by IBM, is the user's responsibility.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
500 Columbus Avenue
Thornwood, New York 10594 USA

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
Mail Station P300
522 South Road
Poughkeepsie, NY 12601-5400
USA
Attention: Information Requests

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

© Copyright IBM Corp. 2009, 2011 301

302 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

Trademarks

The following terms are trademarks of IBM Corporation in the United States, other
countries, or both:
v AIX®

v CICS®

v Cloudscape
v DB2
v Domino®

v IBM
v Lotus®

v RACF®

v Redbooks®

v Tivoli
v WebSphere
v z/OS

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

LINUX is a trademark of Linus Torvalds in the U.S., other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, and service names may be trademarks or service marks
of others.

© Copyright IBM Corp. 2009, 2011 303

304 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

Index

A
Accessing 9
Administration API 205
API 203
API documentation 131
authorization 126, 127, 240

B
batchUpdate method 168
best practices 262
byte array maps 260

C
catalog server

enabling logs 271
enabling trace 271

client 17
Configuring 17
container server

enabling logs 271
enabling trace 271

CopyMode 255

D
Data 9
data access

partitions 9
queries 9
stored data 9
transactions 9

DataGrid API 126
deadlocks

scenarios for 29
dynamic maps

maps 45

E
entity 52

life cycles of 66
entity life cycle 68
entity listener 68, 71
entity manager 72
entity maps

creating 168
entity metadata

emd.xsd file 59
XML configuration 59

entity schema
entity 52

EntityManager 62, 72, 96
EntityManager API

for caching objects 51
EntityManager interface

performance 75
EntityTransaction interface 82

event listeners 135
evictor 177
evictors 139
exception handling 40
exclusive lock 29
extension beans 212
external transaction manager 155

F
FetchPlan 72
FIFO queues

maps 48

G
get method 168
grid authorization 247

H
heaps 262

I
index

callback 120
data access 120
data quality 118
non-key 120
performance 118

indexing
composite index 123
hash index 123

instrumentation agent 76
isolation

for transactions 38
pessimistic locking 38
repeatable read 38

J
Java Authentication and Authorization

Service
JAAS 247

Java Persistence API (JPA)
client-based preload utility

programming 182
JPAEntityLoader plug-in

introduction 166
preload utility

overview 180
time-based data updater

overview 189
time-based updater

starting 190
using with eXtreme Scale

overview 180
JavaMap interface 47

JVM 253

L
listeners

for backing map objects 135
for the eXtreme Scale 135
introduction 135
MapEventListener plug-in 136
ObjectGridEventListener 137
ObjectGridEventListener plug-in 137

loader 177
JPA programming considerations 164
overview 157
using with entity maps and

tuples 168
writing 159

locks
compatibility 29
life cycle 29
time out 29

log element 177
log sequence 177
LogElement 177
logs

overview 271
LogSequence 177

M
map entry locks

indexes 265
query 265

messages 277
monitoring

with the statistics API 208

N
native transactions 212

O
ObjectGridManager 12
ObjectGridManager interface

controlling life cycle with 22
enabling trace with 271

ObjectMap API
API 42
ObjectMap API 42

ObjectMap interface 42
ObjectTransformer

best practices for 267

P
performance 253, 262

best practices 264
locking 264

© Copyright IBM Corp. 2009, 2011 305

plug-in
index 146
introduction 133
introduction to 133
ObjectTransformer plug-in 197
OptimisticCallback 193
plug-in slots 152
TransactionCallback 148
WebSphereTransactionCallback

plug-in 201
Programming eXtreme Scale 7

Q
query 123

Backus Naur 105
BNF 105
clauses 97
client failure 79
entity

retrieving results 93
example 96
functions 97
get plan 108
index 96, 111
key collision 79
methods 83
object map

schema 88
ObjectQuery schema 91
optimization

relationships 111
pagination 96
parameters 96
predicates 97
query plan 108
queue

all partitions 79
entities in a loop 79

schema 91
search elements 83
tuning

indexes 107
pagination 107
parameters 107

valid attributes 91
queues 262

R
release notes 277
removeObjectGrid methods 16
replica preload 173

S
security 126, 127

local 247
plug-ins 247

securityAPI 221
serialization

locking 268
performance 268

session
collision 40
transaction 40

SessionHandle
routing 40

sessions
access data

flush 25
grid 25

shared lock 29
Spring 212

extension beans 211
framework 211
namespace support 211
native transactions 211
packaging 211
shard scope 211
webflow 211

Sprint extension beans 216
start server

programatically 205
statistics 208
stop server

programatically 205
support 277
system API 133

T
trace

options for configuring 273
overview 271

transaction 155
troubleshooting

messages 277
overview 271
release notes 277

TTL evictor 139
tuple objects

creating 168

U
upgradeable lock 29

W
webflow 212
writing evictors

RollBack evictor 141

306 IBM WebSphere eXtreme Scale Version 7.0: Programming Guide March 11, 2011

����

Printed in USA

	Contents
	About the Programming Guide
	Chapter 1. Getting started with WebSphere eXtreme Scale
	Chapter 2. Programming WebSphere eXtreme Scale
	Chapter 3. Accessing data in WebSphere eXtreme Scale
	Interacting with an ObjectGrid using the ObjectGridManager
	createObjectGrid methods
	getObjectGrid methods
	removeObjectGrid methods
	Connecting to a distributed ObjectGrid
	WebSphere eXtreme Scale client configuration

	Controlling the life cycle of an ObjectGrid

	Accessing the ObjectGrid shard
	Using Sessions to access data in the grid
	Handling locks
	Transaction isolation
	SessionHandle for routing
	Optimistic collision exception
	ObjectMap API
	Introduction to ObjectMap
	Dynamic maps
	ObjectMap and JavaMap
	Maps as FIFO queues

	Caching objects and their relationships (EntityManager API)
	Defining an entity schema
	emd.xsd file

	EntityManager in a distributed environment
	Interacting with EntityManager
	Entity listeners and callback methods
	Entity listener examples

	EntityManager fetch plan support
	EntityManager interface performance impact
	Instrumentation agent

	Entity query queues
	EntityTransaction interface

	Query API
	Querying data in multiple time zones
	Using the ObjectQuery API
	Configuring an ObjectQuery schema

	EntityManager Query API
	Simple queries with EntityManager

	Reference for eXtreme Scale queries
	ObjectGrid query Backus-Naur Form

	Query performance tuning
	Query plan
	Query optimization using indexes

	Indexing
	Using indexing for non-key data access
	Composite HashIndex

	Data Grid API
	DataGrid APIs and partitioning
	DataGrid agents and entity-based Maps
	DataGrid API example

	API Documentation

	Chapter 4. System APIs and plug-ins
	Introduction to plug-ins
	Event listeners
	MapEventListener plug-in
	ObjectGridEventListener plug-in

	Eviction
	Writing a custom evictor

	Writing an index plug-in
	TransactionCallback plug-in
	Introduction to plug-in slots
	External transaction managers

	Using a Loader
	Writing a loader
	JPA loader programming considerations
	JPAEntityLoader plug-in
	Using a loader with entity maps and tuples
	Writing a loader with a replica preload controller

	LogElement and LogSequence
	Using eXtreme Scale with JPA
	Client-based JPA preload utility overview
	Client-based JPA preload utility programming

	JPA time-based data updater
	Starting the JPA time-based updater

	OptimisticCallback plug-in
	ObjectTransformer plug-in
	WebSphereTransactionCallback plug-in

	Chapter 5. Administration APIs
	Embedded server API
	Using the embedded server API

	Monitoring with the statistics API

	Chapter 6. Integrating with Spring framework
	Native transactions
	Spring extension beans and namespace support

	Chapter 7. Security API
	Client authentication programming
	Client authorization programming
	Data grid authentication
	Local security

	Chapter 8. Performance considerations
	JVM tuning
	CopyMode best practices
	Byte array maps

	Plug-in evictor performance best practices
	Locking performance best practices
	Map entry locks with query and indexes

	ObjectTransformer interface best practices
	Serialization performance

	Chapter 9. Troubleshooting
	Logs and trace
	Trace options

	Troubleshooting loaders
	Troubleshooting client connectivity problems
	Messages
	Release notes

	Chapter 10. Glossary
	Notices
	Trademarks
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	W

